Skip to main content
Log in

An estimation of the genome length of maritime pine (Pinus pinaster Ait.)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genome length, in units of Morgans or centimorgans, is a fundamental feature of a species. It can be calculated from a complete linkage map. However, the genome size can be estimated with partial linkage data. Using linkage data obtained by the analysis of a two-dimensional electrophoresis of the proteins contained in an haploid organ, the megagametophyte, we suggest an estimation and a confidence interval of the genome length of a gymnosperm, the maritime pine (Pinus pinaster Ait.). The results indicate an important gap between the physical and the genetic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahrman N, Damerval C (1989) Linkage relationships of loci controlling protein amounts in maritime pine (Pinus pinaster Ait.). Heredity 63:267–274

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amount in angiosperms. Phil Trans R Soc Lond B 274:227–274

    Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amount in angiosperms. Proc R Soc Lond B 334:309–345

    CAS  Google Scholar 

  • Bobola MS, Eckert RT, Klein AS (1992) Restriction fragment variation in the nuclear ribosomal DNA repeat unit within and between Picea rubens and Picea mariana. Can J For Res 22:255–263

    Google Scholar 

  • Brown J, Sundaresan V (1991) A recombination hotspot in the maize A1 intragenic region. Theor Appl Genet 81:185–188

    Google Scholar 

  • Chakravarti A, Lasher LA, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    CAS  PubMed  Google Scholar 

  • Chandley AC, Mitchell AR (1988) Hypervariable minisatellite regions are sites for crossing-over at meiosis in man. Cytogenet Cell Genet 48:152–155

    Google Scholar 

  • Chang C, Bowman JL, Dejohn AW, Lander ES, Meyerowitz EM (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci USA 85:6856–6860

    Google Scholar 

  • Cullis CA, Creissen GP, Gorman SW, Teasdale RD (1987) The 25s, 18s, and 5s ribosomal RNA genes from Pinus radiata D. Don. Molecular genetics of forest trees. In: Cheliak WM, Yapa AC (eds). Proc second IUFRO working parties in molecular genetics, Canada: 34–40

  • Diers BW, Keim P, Fehr WR, Shoemaker RC (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83:608–612

    Google Scholar 

  • Flavell RB, O'Dell M, Smith DB, Thompson WF (1985) Chromosome architecture: the distribution of recombination sites, the structure of ribosomal DNA loci and the multiplicity of sequences containing inverted repeats. Molecular form and function of the plant genome. In: van Volten-Doting L, Groot GSSP, Hall TC (eds). NATO ASI, 83, Plenum Press, New York:1–14

    Google Scholar 

  • Gerber S, Rodolphe F, Bahrman N, Baradat Ph (1993) Seed-protein variation in maritime pine (Pinus pinaster Ait.) revealed by two-dimensional electrophoresis: genetic determinism and construction of a linkage map. Theor Appl Genet 85:521–528

    Google Scholar 

  • Harry DE, Mordecai KS, Kinlaw CS, Loopstra CA, Sederoff RR (1989) DNA sequence diversity in alcohol dehydrogenase genes from pines. Proc 20th southern forest tree improvement conference, Charleston, South Carolina: 373–380

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare) Genome 34:437–447

    Google Scholar 

  • Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphism. Genetics 120:947–958

    CAS  PubMed  Google Scholar 

  • Kaback DB, Guacci V, Barber D, Mahon JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256:228–232

    Google Scholar 

  • Kinlaw CS, Harry DE, Sederoff RR (1990) Isolation and Characterization of alcohol dehydrogenase cDNAs from Pinus radiata. Can J For Res 20:1343–1350

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps for experimental and natural populations. Genomics I, 174–181

    Google Scholar 

  • Messeguer R, Ganal M, de Vicente MC, Young ND, Bolkan H, Tanksley SD (1991) High-resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536

    Google Scholar 

  • Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Pl Syst Evol 153(1–2):119–131

    Google Scholar 

  • Oliver SG et al. (1992) The complete DNA sequence of yeast chromosome III. Nature 357:38–46

    Google Scholar 

  • Rake AV, Miksche JP, Hall RB, Hansen KM (1980) DNA reassociation kinetics of four conifers. Can J Genet Cytol 22:69–79

    Google Scholar 

  • Rees H, Durrant A (1986) Recombination and genome size. Theor Appl Genet 73:72–76

    Google Scholar 

  • Reiter RS, Williams JGK, Feldmann KA, Rafalski JA, Tingey SV, Scolnik PA (1992) Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci USA 89:1477–1481

    Google Scholar 

  • Thuriaux P (1977) Is recombination confined to structural genes on the eucaryotic genome? Nature 268:460–462

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. M. A. Tigerstedt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, S., Rodolphe, F. An estimation of the genome length of maritime pine (Pinus pinaster Ait.). Theoret. Appl. Genetics 88, 289–292 (1994). https://doi.org/10.1007/BF00223634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223634

Key words

Navigation