Skip to main content
Log in

Continuous multivariate methods in community analysis: Some problems and developments

  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

The early development of indirect ordination techniques in ecology was along two main lines: the Wisconsin approach, which led to the development and wide use of polar ordination (PO), and the multivariate Euclidean approach, which led to wide use of principal component analysis (PCA). Several methodological problems then emerged for both techniques: the basis of axis definition, the R/Q dichotomy, the choice of similarity measure and data transformation, the treatment of discontinuities, and the distortion due to nonlinearity and its effects on axis interpretation.

Developments in the last few years have contributed significantly towards the solutions of these problems:

  1. (1)

    The procedures of axis selection in PO have been modified so as to allow for either similarities in the full assemblage of samples (as in PCA), or choice of end points by known environmental relations (as in direct gradient analysis).

  2. (2)

    The duality between the R and Q similarity matrices in PCA, and the simultaneous site and species ordination in reciprocal averaging, turn the decision between R and Q techniques into a merely technical point.

  3. (3)

    Some systematic relations have been recognized within the large array of similarity measures used in ordination, and rational guidelines for choices among them can be suggested.

  4. (4)

    Non-centered PCA and reciprocal averaging (correspondence analysis) have proved to be useful in describing compositional variation that includes discontinuities.

  5. (5)

    Divergent solutions have been developed to cope with the problem of nonlinearity and axis interpretation: (a) The range of beta-diversity within which linear ordination methods do not cause too severe coenocline distortion has been defined. (b) Transformations of data and similarity measures (and in particular double standardization) have been shown to reduce distortion due to non-linearity in ordination techniques assuming linear structure. (c) Some new methods of nonlinear ordination (catenation) have been fairly successful in detecting coenoclines in simulated and real data. No single answer to the problems of indirect ordination has emerged, but these various solutions make the problems generally manageable.

Some continuous multivariate techniques have been developed in which individual axes are interpretable as noda, with axes and noda defining a structure of overlapping groups of sites connected by continuous variation. These techniques provide a further link between ordination and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aart, P. J. M. van der. 1973. Distribution analysis of wolfspiders (Araneae, Lycosidae) in a dune area by means of principal component analysis. Neth. J. Zool. 23: 266–339.

    Google Scholar 

  • Anderson, A. J. B. 1971. Ordination methods in ecology. J. Ecol. 59: 713–726.

    Google Scholar 

  • Austin, M. P. 1968. An ordination study of a chalk grassland community. J. Ecol. 56: 739–758.

    Google Scholar 

  • Austin, M. P. 1972. Models and analysis of descriptive ecological data. In: Jeffers, J. N. R., Mathematical Models in Ecology. Symp. Brit. Ecol. Soc. 12: 61–86.

  • Austin, M. P. 1976a. On non-linear species response models in ordination. Vegetatio 33: 33–41.

    Google Scholar 

  • Austin, M. P. 1976b. Performance of four ordination techniques assuming three different non-linear species response models. Vegetatio 33: 43–49.

    Google Scholar 

  • Austin, M. P. & P. Greig-Smith. 1968. The application of quantitative methods to vegetation survey. II. Some methodological problems of data from rain forest. J. Ecol. 56: 827–844.

    Google Scholar 

  • Austin, M. P. & I. Noy-Meir. 1971. The problem of non-linearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.

    Google Scholar 

  • Austin, M. P. & L. Orlóci. 1966. Geometric models in ecology. II. An evaluation of some ordination techniques. J. Ecol. 54: 217–227.

    Google Scholar 

  • Ayyad, M. A. G. & R. L. Dix. 1964. An analysis of a vegetation-microenvironmental complex on prairie slopes in Saskatchewan. Ecol. Monogr. 34: 421–442.

    Google Scholar 

  • Bannister, P. 1968. An evaluation of some procedures used in simple ordinations. J. Ecol. 56: 27–34.

    Google Scholar 

  • Beals, E. W. 1960. Forest bird communities in the Apostle Islands of Wisconsin. Wilson Bull. 72: 156–181.

    Google Scholar 

  • Beals, E. W. 1973. Ordination: mathematical elegance and ecological naïveté. J. Ecol. 61: 23–35.

    Google Scholar 

  • Beard, J. S. 1973. The physiognomic approach. (Germ. summ.). In: Whittaker, R. H. (ed.), Ordination and Classification of Communities. Handb. Veget. Sci. 5: 355–386. Junk, The Hague.

    Google Scholar 

  • Benzécri, J.-P. 1969. Statistical analysis as a tool to make patterns emerge from data. In: Watanabe, S. (ed.). Methodologies of Pattern Recognition. Pages 35–74. Academic Press, N.Y.

    Google Scholar 

  • Bouxin, G. 1975. Ordination and classification in the savanna vegetation of the Akagera Park (Rwanda, Central Africa). (French summ.). Vegetatio 29: 155–167.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Google Scholar 

  • Brown, R. T. & J. T. Curtis. 1952. The upland conifer-hardwood forests of northern Wisconsin. Ecol. Monogr. 22: 217–234.

    Google Scholar 

  • Burr, E. J. 1968. Cluster sorting with mixed character types. I. Standardization of character values. Aust. Comput. J. 1: 97–99.

    Google Scholar 

  • Cassie, R. M. 1963. Multivariate analysis in the interpretation of numerical plankton data. N. Z. J. Sci. 6: 36–59.

    Google Scholar 

  • Češka, A. & H. Roemer. 1971. A computer program for identifying species-relevé groups in vegetation studies. (Germ. summ.) Vegetatio 23: 255–277.

    Google Scholar 

  • Chardy, P., M. Glemarec & A. Laurec. 1976. Application of inertia methods to benthic marine ecology: practical implications of the basic options. Estuar, Coast. Mar. Sci. 4: 179–205.

    Google Scholar 

  • Cottam, G., F. G. Goff & R. H. Whittaker. 1973. Wisconsin comparative ordination. (Germ. summ.). In: Whittaker, R. H. (ed.), Ordination and Classification of Communities. Handb. Veget. Sci. 5: 193–221.

  • Crawford, R. M. M. & D. Wishart. 1967. A rapid multivariate method for the detection and classification of groups of ecologically related species. J. Ecol. 55: 505–524.

    Google Scholar 

  • Crawford, R. M. M. & D. Wishart. 1968. A rapid classification and ordination method and its application to vegetation mapping. J. Ecol. 56: 385–404.

    Google Scholar 

  • Curtis, J. T. 1955. A prairie continuum in Wisconsin. Ecology 36: 558–566.

    Google Scholar 

  • Curtis, J. T. & R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.

    Google Scholar 

  • Dagnelie, P. 1960. Contribution à l'étude des communautés végétales par l'analyse factorielle. (Engl. summ.). Bull. Serv. Carte phytegéogr. Sér. B 5: 7–71, 93–195.

    Google Scholar 

  • Dahl, E. 1957. Rondane: Mountain vegetation in South Norway and its relation to the environment. Skr. norske Vidensk. Akad., Mat.-naturv. Kl. 1956(3): 1–374.

    Google Scholar 

  • Dale, M. B. 1964. The application of multivariate methods to heterogeneous data. Ph.D. Thesis. Univ. of Southampton.

  • Dale, M. B. 1975. On objectives of methods of ordination. Vegetatio 30: 15–32.

    Google Scholar 

  • Dale, M. B. & D. J. Anderson. 1973. Inosculate analysis of vegetation data. Aust. J. Bot. 21: 253–276.

    Google Scholar 

  • Dale, M. B. & L. J. Webb. 1975. Numerical methods for the establishment of associations. (Germ. summ.) Vegetatio 30: 77–87.

    Google Scholar 

  • Ellenberg, H. 1950. Landwirtschaftliche Pflanzensoziologie. I. Unkrautgemeinschafte als Zeiger für Klima und Boden. Ulmer, Stuttgart. 141 pp.

    Google Scholar 

  • Ellenberg, H. 1952. Landwirtschaftliche Pflanzesoziologie. II. Wiesen und Weiden und ihre standörtliche Bewertung. Ulmer, Stuttgart. 143 pp.

    Google Scholar 

  • Ellenberg, H. 1956. Grundlagen der Vegetationsgliederung. 1. Teil. Aufgaben und Methoden der Vegetationskunde. In: Walter, H. (ed.), Einführung in die Phytologie. Vol. 4, pt. 1, 136 pp. Ulmer, Stuttgart.

    Google Scholar 

  • Fasham, M. J. R. 1976. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenocline. Ecology (in press).

  • Flenley, J. R. 1969. The vegetation of the Wabag region, New Guinea Highlands: a numerical study. J. Ecol. 57: 465–490.

    Google Scholar 

  • Frydman, I. & R. H. Whittaker. 1968. Forest associations of southeast Lublin Province, Poland. (Germ. summ.). Ecology 49: 896–908.

    Google Scholar 

  • Gauch, H. G. Jr. 1973a. The relationship between sample similarity and ecological distance. Ecology 54: 618–622.

    Google Scholar 

  • Gauch, H. G. Jr. 1973b. A quantitative evaluation of the Bray-Curtis ordination. Ecology 54: 829–836.

    Google Scholar 

  • Gauch, H. G. Jr. & G. B. Chase. 1974. Fitting the Gaussian curve to ecological data. Ecology 55: 1377–1381.

    Google Scholar 

  • Gauch, H. G. Jr., G. B. Chase & R. H. Whittaker. 1974. Ordination of vegetation samples by Gaussian species distributions. Ecology 55: 1382–1390.

    Google Scholar 

  • Gauch, H. G. Jr. & T. R. Wentworth. 1976. Canonical correlation analysis as an ordination technique. Vegetatio 33: 17–22.

    Google Scholar 

  • Gauch, H. G. Jr. & R. H. Whittaker. 1972a. Coenocline simulation. Ecology 53: 446–451.

    Google Scholar 

  • Gauch, H. G. Jr. & R. H. Whittaker. 1972b. Comparison of ordination techniques. Ecology 53: 868–875.

    Google Scholar 

  • Gauch, H. G., Jr., R. H. Whittaker & T. R. Wentworth. 1976. A comparative study of reciprocal averaging and other ordination techniques. J. Ecol. (in press).

  • Gittins, R. 1969. The application of ordination techniques. In: Rorison, I. H. (ed.), Ecological Aspects of the Mineral Nutrition of Plants. Symp. Brit. Ecol. Soc. 1968, 9: 37–66.

  • Gleason, H. A. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53: 7–26.

    Google Scholar 

  • Goff, F. G. and G. Cottam. 1967. Gradient analysis: the use of species and synthetic indices. Ecology 48: 793–806.

    Google Scholar 

  • Goodall, D. W. 1954. Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Aust. J. Bot. 2: 304–324.

    Google Scholar 

  • Goodall, D. W. 1963. The continuum and the individualistic association. (French summ.). Vegetatio 11: 297–316.

    Google Scholar 

  • Goodall, D. W. 1973. Sample similarity and species correlation. (Germ. summ.). In: Whittaker, R. H. (ed.), Handb. Veget. Sci. 5: 105–156. Junk, The Hague.

    Google Scholar 

  • Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Google Scholar 

  • Green, R. H. 1974. Multivariate niche analysis with temporally varying environmental factors. Ecology 55: 73–83.

    Google Scholar 

  • Greig-Smith, P. 1964. Quantitative Plant Ecology (2nd ed.). Butterworths, London. XII + 256 pp.

    Google Scholar 

  • Greig-Smith, P. 1971. Analysis of vegetation data: the user viewpoint. In: G. P. Patil et al. (eds.), Statistical Ecology. Vol. 3, 149–166. Pennsylvania State Univ. Press.

  • Greig-Smith, P., M. P. Austin & T. C. Whitmore. 1967. The application of quantitative methods to vegetation survey. I. Association-analysis and principal component ordination of rain forest. J. Ecol. 55: 483–503.

    Google Scholar 

  • Groenewoud, H. van. 1965. Ordination and classification of Swiss and Canadian coniferous forests by various biometric and other methods. Germ. summ.). Ber. Geobot. Inst. Rübel, Zürich, 1964, 36: 28–102.

    Google Scholar 

  • Groenewoud, H. van. 1973. Covariation of plant species along gradients (manuscript).

  • Guttman, L. 1968. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33: 469–506.

    Google Scholar 

  • Hall, A. V. 1970. A computer-based method for showing continua and communities in ecology. J. Ecol. 58: 591–602.

    Google Scholar 

  • Hill, M. O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.

    Google Scholar 

  • Hill, M. O. 1974. Correspondence analysis: a neglected multivariate method., J. Roy. Statist. Soc., C, 23: 340–354.

    Google Scholar 

  • Hill, M. O. 1976. Correspondence analysis and habitat width (manuscript).

  • Hill, M. O., R. G. H. Bunce & M. W. Shaw. 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. J. Ecol. 63: 597–613.

    Google Scholar 

  • Hinneri, S. 1972. An ecological monograph on eutrophic deciduous woods in the SW archipelago of Finland. Annal. Univers. Turku, Series A II, 50, 131 pp.

    Google Scholar 

  • Ihm, P. & H. van Groenewoud. 1975. A multivariate ordering of vegetation data based on Gaussian type gradient response curves. J. Ecol. 63: 767–777.

    Google Scholar 

  • Ivimey-Cook, R. B. & M. C. F. Proctor. 1967. Factor analysis of data from an East Devon heath: a comparison of principal component and rotated solutions. J. Ecol. 55: 405–413.

    Google Scholar 

  • Ivimey-Cook, R. B., M. C. F. Proctor & D. L. Wigston. 1969. On the problem of ‘R/Q’ terminology in multivariate analyses of biological data. J. Ecol. 57: 673–675.

    Google Scholar 

  • James, F. C. 1971. Ordinations of habitat relationships among breeding birds. Wilson Bull. 83: 215–236.

    Google Scholar 

  • Jeglum, J. K., C. F. Wehrhahn & J. M. A. Swan. 1971. Comparisons of environmental ordinations with principal component vegetational ordinations for sets of data having different degrees of complexity. (French summ.). Can. J. For. Res. 1: 99–112.

    Google Scholar 

  • Johnson, R. 1973. A study of some multivariate methods for the analysis of botanical data. Ph.D. Thesis, Utah State University, Logan.

  • Kaiser, H. F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187–200.

    Google Scholar 

  • Kessell, S. R. & R. H. Whittaker. 1976. Comparisons of three ordination techniques. Vegetatio. 32: 21–29.

    Google Scholar 

  • Kershaw, K. A. 1968. Classification and ordination of Nigerian savanna vegetation. J. Ecol. 56: 467–482.

    Google Scholar 

  • Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Google Scholar 

  • Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.

    Google Scholar 

  • Kruskal, J. B. & J. D. Carroll. 1969. Geometric models and badness-of-fit functions. In: Krishnaiah, P. R. (ed.), Multivariate Analysis, 2: 639–671. Academic Press, New York.

    Google Scholar 

  • Lacoste, A. 1976. Relations floristiques entre les groupements prairiaux du Triselo-Polygonion et les megaphorbiaies (Adenostylion) dans les Alpes occidentales. Vegetatio 31: 161–176.

    Google Scholar 

  • Lacoste, A. & M. Roux. 1971. L'analyse multidimensionnelle en phytosociologie et en écologie. Application à des données de l'étage subalpin des Alpes maritimes. I. L'analyse des données floristiques. (Engl. & Germ. summs.). Oecol. Plant. 6: 353–369.

    Google Scholar 

  • LaFrance, C. R. 1972. Sampling and ordination characteristics of computer-simulated individualistic communities. Ecology 53: 387–397.

    Google Scholar 

  • Lambert, J. M. 1972. Theoretical models for large-scale vegetation survey. In: Jeffers, J. N. R. (ed.), Mathematical Models in Ecology. Symp. Brit. Ecol. Soc. 1971, 12: 87–109. Blackwell, Oxford.

    Google Scholar 

  • Lambert, J. M. & M. B. Dale. 1964. The use of statistics in phytosociology. Adv. Ecol. Res. 2: 59–99.

    Google Scholar 

  • Lambert, J. M., S. E. Meacock, J. Barrs & P. F. M. Smartt. 1973. AXOR and MONIT: two new polythetic-divisive strategies for hierarchical classification. Taxon 22: 173–176.

    Google Scholar 

  • Lambert, J. M. & W. T. Williams. 1962. Multivariate methods in plant ecology. IV. Nodal analysis. J. Ecol. 50: 775–802.

    Google Scholar 

  • Lance, G. N. & W. T. Williams. 1967. Mixed-data classificatory programs. I. Agglomerative systems. Aust. Comput. J. 1: 15–20.

    Google Scholar 

  • Lange, R. T. 1968. Influence analysis in vegetation. Aust. J. Bot. 16: 555–564.

    Google Scholar 

  • Lieth, H. & G. W. Moore. 1971. Computerized clustering of species in phytosociological tables and its utilization for field work. In: G. P. Patil et al. (ed.), Statistical Ecology I, 404–422. Pennsylvania State Univ. Press.

  • Luria, M. 1975. Annual plant communities of a loessial plain in the Negev. M. Sc. Thesis, Hebrew University, Jerusalem. (Hebrew with English summ.).

  • Maarel, E. van der. 1969. On the use of ordination models in phytosociology. (Germ. summ.). Vegetatio 19: 21–46.

    Google Scholar 

  • Maarel, E. van der. 1972. Ordination of plant communities on the basis of their plant genus, family and order relationships. (Germ. summ.). In: van der Maarel. E. & R. Tüxen (eds.), Grundfragen und Methoden in der Pflanzensoziologie. Bor. Symp. int. Ver. Vegetationskunde, Rinteln 1970: 183–192.

  • Maarel, E. van der & J. Leertouwer. 1967. Variation in vegetation and species diversity along a local environmental gradient. Acta Bot. Neerl. 16: 211–221.

    Google Scholar 

  • Matuszkiewicz, W. 1948. Roślinność lasów okolik Lwowa. (Engl. summ.). Annls Univ. Mariae Curie-Skŀodoska, Lublin, Sect. C, 3: 119–193.

    Google Scholar 

  • McDonald, R. P. 1962. A general approach to nonlinear factor analysis. Psychometrika 27: 397–415.

    Google Scholar 

  • McDonald, R. P. 1966. Applications of nonlinear factor analysis in ecology. Proc. Symp. Ecol. Soc. Austral., Armidale.

  • McIntosh, R. P. 1973. Matrix and plexus techniques. (Germ. summ.). In: Whittaker, R. H. (ed.), Ordination and Classification of Communities, Handb. Veget. Sci. 5: 157–191.

  • Mølholm Hansen, H. 1930. Studies on the vegetation of Iceland. In: Kolderup Rosenvinge, J. L. A. & E. Warming (eds.). The Botany of Iceland, 3 (pt. 1, no. 10): 1–186. Frimodt, Copenhagen.

    Google Scholar 

  • Mølholm Hansen, H. 1932. Nørholm Hede, en formations-statistisk Vegetationsmonografi. (Engl. summ.). K. danske Vidensk Selsk, Skr., Nat.-Math. Afd., Ser. 9, 3(3): 99–196.

    Google Scholar 

  • Moral, R. del. 1975. Vegetation clustering by means of Isodata: revision by multiple discriminant analysis. Vegetatio 29: 179–190.

    Google Scholar 

  • Motyka, J. 1947. O zadaniach i metodach badán geobotanicznych. (French summ.). Annls Univ. Mariae Curie-Skŀodowska, Lublin. Sect. C (Suppl.). 1: 1–168.

    Google Scholar 

  • Norris, J. M. & J. P. Barkham. 1970. A comparison of some Cotswold beechwoods using multiple-discriminant analysis. J. Ecol. 58: 603–619.

    Google Scholar 

  • Noy-Meir, I. 1970. Component analysis of semi-arid vegetation in southeastern Australia. Ph.D. Thesis. Australian National University.

  • Noy-Meir, I. 1971. Multivariate analysis of the semi-arid vegetation in southeastern Australia: nodal ordination by component analysis. Proc. Ecol. Soc. Aust. 6: 159–193.

    Google Scholar 

  • Noy-Meir, I. 1973a. Data transformations in ecological ordination. I. Some advantages of non-centering. J. Ecol. 61: 329–341.

    Google Scholar 

  • Noy-Meir, I. 1973b. Divisive polythetic classification of vegetation by optimized division on ordination components. J. Ecol. 61: 753–760.

    Google Scholar 

  • Noy-Meir, I. 1974a. Catenation: quantitative methods for the definition of coenoclines. Vegetatio 29: 89–99.

    Google Scholar 

  • Noy-Meir, I. 1974b. Multivariate analysis of the semiarid vegetation in south-eastern Australia. II. Vegetation catenae and environmental gradients. Aust. J. Bot. 22: 115–140.

    Google Scholar 

  • Noy-Meir, I. & M. P. Austin. 1970. Principal component ordination and simulated vegetation data. Ecology 51: 551–552.

    Google Scholar 

  • Noy-Meir, I., D. Walker & W. T. Williams. 1975. Data transformations in ecological ordination. II. On the meaning of data standardization. J. Ecol. 63: 779–800.

    Google Scholar 

  • Orlóci, L. 1966. Geometric models in ecology. I. The theory and application of some ordination methods. J. Ecol. 54: 193–215.

    Google Scholar 

  • Orlóci, L. 1967a. An agglomerative method for classification of plant communities. J. Ecol. 55: 193–206.

    Google Scholar 

  • Orlóci, L. 1967b. Data centering: a review and evaluation with reference to component analysis. Syst. Zool. 16: 208–212.

    Google Scholar 

  • Orlóci, L. 1972. On objective functions of phytosociological resemblance. Am. Midl. Nat. 88: 28–55.

    Google Scholar 

  • Orlóci, L. 1973. Ordination by resemblance matrices. (Germ. summ.). In: Whittaker, R. H. (ed.), Ordination and classification of communities. Handb. Veget. Sci. 5: 251–286. Junk, The Hague.

    Google Scholar 

  • Orlóci, L. 1974a. On information flow in ordination. Vegetatio 29: 11–16.

    Google Scholar 

  • Orlóci, L. 1974b. Revisions for the Bray and Curtis ordination (French summ.). Can. J. Bot. 52: 1773–1776.

    Google Scholar 

  • Orlóci, L. 1975. Multivariate Analysis in Vegetation Research, Junk, The Hague. 276 pp.

    Google Scholar 

  • Peet, R. K. 1975. Forest vegetation of the east slope of the Colorado Front Range. Ph.D. Thesis, Cornell University.

  • Pielou, E. C. 1969. An Introduction to Mathematical Ecology, Wiley, N.Y. 286 pp.

    Google Scholar 

  • Pignatti, E. & S. Pignatti. 1975. Syntaxonomy of the Sesleria varia-grasslands of the calcareous Alps. (Germ. summ.). Vegetatio 30: 5–14.

    Google Scholar 

  • Poore, M. E. D. 1955. The use of phytosociological methods in ecological investigations. II. Practical uses involved in an attempt to apply the Braun-Blanquet system. J. Ecol. 43: 245–269.

    Google Scholar 

  • Poore, M. E. D. 1956. The use of phytosociological methods in ecological investigations. IV. General discussion of phytosociological problems. J. Ecol. 44: 28–50.

    Google Scholar 

  • Ramensky, L. G. 1926. Die Grundgesetzmässigkeiten im Aufbau der Vegetationskecke. Bot. Zbl. N. F. 7: 453–455.

    Google Scholar 

  • Ramensky, L. G. 1930. Zur Methodik der vergleichenden Bearbeitung und Ordnung von Pflanzenlisten und andere Objecten, die durch mehrere verschiedenartig wirkende Factoren bestimmt werden. Beitr. Biol. Pfl. 18: 269–304.

    Google Scholar 

  • Romane, F. 1972. Utilisation de l'analyse multivariable en Phytoécologie. Invest. Pesq., Barcelona 36: 131–139.

    Google Scholar 

  • Seligman, N. G. 1973. A quantitative geobotanical analysis of the vegetation of the Golan. Ph.D. Thesis, Hebrew University, Jerusalem. (Hebrew with English summary.).

  • Shepard, R. N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. I., II. Psychometrika 27: 125–140, 219–246.

    Google Scholar 

  • Shepard, R. N. & J. D. Carroll. 1966. Parametric representation of nonlinear data structures. In: Krishnaiah, P. R. (ed.), Multivariate Analysis Vol. 1: 561–592. Academic Press, N.Y. and London.

    Google Scholar 

  • Shmida, A. 1972. The vegetation of Jebel Maghara, Sinai. M.Sc. Thesis, Hebrew University, Jerusalem. (Hebrew with English summary.)

  • Sneath, P. H. A. 1966. A method of curve seeking from scattered points. Comput. J. 8: 383–391.

    Google Scholar 

  • Sobolev, L. N. & V. D. Utekhin. 1973. Russian (Ramensky) approaches to community systematization. (Germ. summ.). In: Whittaker, R. H. (ed.), Ordination and Classification of Communities. Handb. Veget. Sci. 5: 75–103, Junk, The Hague.

    Google Scholar 

  • Sórensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Biol. Skr., K. danske Vidensk. Selsk. 5(4): 1–34.

    Google Scholar 

  • Swan, J. M. A. 1970. An examination of some ordination problems by use of simulated vegetational data. Ecology 51: 89–102.

    Google Scholar 

  • Swan, J. M. A. & R. L. Dix. 1966. The phytosociological structure of upland forest at Candle Lake, Saskatchewan. J. Ecol. 54: 13–40.

    Google Scholar 

  • Swan, J. M. A., R. L. Dix & C. F. Wehrhahn. 1969. An ordination technique based on the best possible stand-defined axes and its application to vegetational analysis. Ecology 50: 206–212.

    Google Scholar 

  • Tuomikoski, R. 1942. Untersuchungen über die Vegetation der Bruchmoore in Ostfinnland: I. Zur Methodik der pflanzensoziologischen Systematik. Ann. Bot., Soc. Zool.-Bot. Fenn. ‘Vanamo’ (Suomal eläin-ja kasvit. Seur. van. kasvit. Julk.) 17(1): 1–203.

    Google Scholar 

  • Vries, D. M. de 1953. Objective combinations of species. Acta Bot. Neerl. 1: 497–499.

    Google Scholar 

  • Vries, D. M. de, J. P. Baretta & G. Hamming. 1954. Constellation of frequent herbage plants based on their correlation in occurrence. Vegetatio 5/6: 105–111.

    Google Scholar 

  • Walker, B. H. 1974. Some problems arising from the preliminary manipulation of plant ecological data for subsequent numerical analysis. J. S. Afr. Bot. 40: 1–13.

    Google Scholar 

  • Webb, D. A. 1954. Is the classification of plant communities either possible or desirable? Bot. Tidsskr. 51: 362–370.

    Google Scholar 

  • Webb, L. J., J. G. Tracey, W. T. Williams & G. N. Lance. 1967. Studies in the numerical analysis of complex rain-forest communities: I. A comparison of methods applicable to site/species data. J. Ecol. 55: 171–191.

    Google Scholar 

  • Wentworth, T. R. 1976. The vegetation of limestone and granite soils in the mountains of southeastern Arizona. Ph.D. Thesis, Cornell University.

  • Westhoff, V., J. J. Barkman, H. Doing & C. G. van Leeuwen. 1959. Enige opmerkingen over de terminologie in de vegetatiekunde. Jaarb. Kon. Ned. Bot. Ver. 1958: 44–46.

    Google Scholar 

  • Westhoff, V. & E. van der Maarel. 1973. The Braun-Blanquet approach. (Germ. summ.). In: Whittaker, R. H. (ed.), Ordination and Classification of Communities, Handb. Veget. Sci. 5: 617–726. Junk, The Hague.

    Google Scholar 

  • Westman, W. E. 1975. Edaphic climax pattern of the pygmy forest region of California. Ecol. Monogr. 45: 109–135.

    Google Scholar 

  • Whittaker, R. H. 1951. A criticism of the plant association and climatic elimax concepts. NW Sci. 25: 17–31.

    Google Scholar 

  • Whittaker, R. H. 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecol. Monogr. 22: 1–44.

    Google Scholar 

  • Whittaker, R. H., 1956. The vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

  • Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Google Scholar 

  • Whittaker, R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Google Scholar 

  • Whittaker, R. H. 1972. Convergences of ordination and classification. (Germ. summ.). In: van der Maarel, E. & R. Tüxen (eds.). Grundfrage und Methoden in der Pflanzensoziologie. Ber Symp. int. Ver. Vegetationskunde, Rinteln 1970: 39–57.

  • Whittaker, R. H. (ed.). 1973. Handbook of Vegetation Science. Part V. Ordination and Classification of Communities. Junk, The Hague. 737 pp.

    Google Scholar 

  • Whittaker, R. H. 1975. Communities and Ecosystems. 2nd ed. Macmillan, N. Y. 385 pp.

    Google Scholar 

  • Whittaker, R. H. & C. W. Fairbanks. 1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology 39: 46–65.

    Google Scholar 

  • Whittaker, R. H. & H. G. Gauch Jr. 1973. Evaluation of ordination techniques. (Germ. summ.). In: Whittaker, R. H. (ed.), Ordination and Classification of Commuties. Handb. Veget. Sci. 5: 287–321. Junk, The Hague.

    Google Scholar 

  • Williams, W. T. 1971. Principles of clustering. Ann. Rev. Ecol. Syst. 2: 303–326.

    Google Scholar 

  • Williams, W. T., M. B. Dale & G. N. Lance. 1971. Two outstanding ordination problems. Aust. J. Bot. 19: 251–258.

    Google Scholar 

  • Williams, W. T. & J. M. Lambert. 1961. Multivariate methods in taxonomy. Taxon 10: 205–211.

    Google Scholar 

  • Williams, W. T. & G. N. Lance. 1968. Choice of strategy in the analysis of complex data. Statistician 18: 31–44.

    Google Scholar 

  • Williamson, J. 1972. The relation of principal component analysis to the analysis of variance. Int. J. Math. Educ. Sci. Technol. 3: 35–42.

    Google Scholar 

  • Wold, H. 1966. Estimation of principal components and related models by iterative least squares. In: Krishnaiah, P. R. (ed.), Multivariate Analysis, 1: 391–420. Academic Press, New York.

    Google Scholar 

  • Wood, K. R., R. L. McCormarck & L. T. Villone, 1964. Nonlinear, factor analysis program. A-78A. Tech. Memo 1764. Systems Development Corp., Santa Monica, California.

    Google Scholar 

  • Yarranton, G. A. 1967. Principal components analysis of data from saxicolous bryophyte vegetation at Steps Bridge, Devon. I. A quantitative assessment of variation in the vegetation. Can. J. Bot. 45: 93–118.

    Google Scholar 

  • Yarranton, G. A., W. J. Beasleigh, R. G. Morrison & M. I. Shafi. 1972. On the classification of phytosociological data into nonexclusive groups with a conjecture about determining the optimum number of groups in a classification. Vegetatio 24: 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper results from independent research on ordination by the first author while he was a Research Student at the Australian National University in Canberra, where he benefited from the advice and help of W. T. Williams and Donald Walker, and by the second author and H. G. Gauch at Cornell University with support by the National Science Foundation. The structure of the paper is based on a seminar given by the first author at the Centre d'Études Phytosociologiques et Écologiques at Montpellier in October 1974. Discussions with M. P. Austin. M. B. Dale, Eilif Dahl, and László Orlóci, and exchange of manuscripts and ideas with François Romane, M. O. Hill, M. P. Austin, and M. J. Fasham have helped to clarify some of the problems and to bring this review up to date.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noy-Meir, I., Whittaker, R.H. Continuous multivariate methods in community analysis: Some problems and developments. Vegetatio 33, 79–98 (1977). https://doi.org/10.1007/BF00205904

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00205904

Keywords

Navigation