Skip to main content
Log in

Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The cut hypocotyl of Ricinus communis L. seedlings exudes phloem sap which contains a characteristic set of proteins (Sakuth et al. 1993, Planta 191, 207–213). These sieve-tube exudate proteins were probed with antibodies to highly conserved proteins, namely ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), Rubisco subunit-binding protein, heat-shock protein (HSP 70), chaperonin GroEL and ubiquitin. Homologous proteins in the sieve-tube exudate were identified with antisera to HSP 70, Rubisco-subunit-binding protein and ubiquitin. Ribulose-1,5-bisphosphate carboxylase-oxygenase, which was present in the tissue, was not detected. Of all the cross-reactive proteins detected, ubiquitin was special because the ubiquitin-to-protein ratio in the sieve-tube exudate was higher than in both the surrounding hypocotyl and in the cotyledonary tissues. Therefore, ubiquitin features properties which favour its transfer into the sieve tubes and which might rely on efficient transport through plasmodesmata. It is assumed that chaperones and ubiquitin are needed for the maintenance of sieve-tube function, e.g. to ensure correct folding of proteins. Their possible involvement in protein translocation through plasmodesmata from companion cells to sieve tubes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HSP:

heat-shock protein

Rubisco:

ribulose1,5-bisphosphate carboxylase-oxygenase

RBP:

Rubisco-subunit-binding protein

STEP:

sieve-tube exudate protein

References

  • Ang, D., Liberek, K., Skowyra, D., Zylicz, M., Georgopoulos, C. (1991) Biological role and regulation of the universally conserved heat shock proteins. J. Biol. Chem. 266, 24233–24236

    Google Scholar 

  • Bachmair, A., Becker, F., Masterson, R.V., Schell, J. (1990) Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant. EMBO J. 9, 4543–4549

    Google Scholar 

  • Bostwick, D.E., Dannenhoffer, J.M., Skaggs, M.I., Lister, R.M., Larkins, B.A., Thompson, G.A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4, 1539–1548

    Google Scholar 

  • Citovsky, V. (1993) Probing plasmodesmal transport with plant viruses. Plant Physiol. 102, 1071–1076

    Google Scholar 

  • Cronshaw, J. (1981) Phloem structure and function. Annu. Rev. Plant Physiol. 32, 465–484

    Google Scholar 

  • Ellis, R.J. (1990) Molecular chaperones: The plant connection. Science 250, 954–959

    Google Scholar 

  • Evert, R.F. (1990) Dicotyledons. In: Sieve elements, pp. 103–137, Behnke, H.-D., Sjolund, R.D., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Finley, D., Bartel, B., Varshavsky, A. (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401

    Article  CAS  PubMed  Google Scholar 

  • Fisher, D.B., Wu, Y., Ku, M.S.B. (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol. 100, 1433–1441

    Google Scholar 

  • Fujiwara, T., Giesman-Cookmeyer, D., Ding, B., Lommel, S.A., Lucas, W.J. (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5, 1783–1794

    Google Scholar 

  • Grimm, R., Speth, V., Gatenby, A.A., Schäfer, E. (1991) GroEL-related molecular chaperones are present in the cytosol of oat cells. FEBS Lett. 286, 155–158

    Google Scholar 

  • Heinemeyer, W., Kleinschmidt, J.A., Saidowsky, J., Escher, C., Wolf, D.H. (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 10, 555–562

    Google Scholar 

  • Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C.P., Hendrix, R.W., Ellis, R.J. (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330–334

    Google Scholar 

  • Jentsch, S., Seufert, W., Sommer, T., Reins, H-A. (1990) Ubiquitinconjugating enzyems: novel regulators of eukaryotic cells. Trends Biochem. Sci. 15, 195–198

    Google Scholar 

  • Kallarackal, J., Orlich, G., Schobert, C., Komor, E. (1989) Sucrose transport into the phloem of Ricinus seedlings as measured by sieve tube sap analysis. Planta 177, 327–335

    Google Scholar 

  • Kempers, R., Prior, D.M.M., Van Bel, A.J.E., Oparka, K.J. (1993) Plasmodesmata between sieve elements and companion cells of extrafascicular phloem of Cucurbita maxima permit passage of 3 kDa fluorescent probes. Plant J. 4, 567–575

    Google Scholar 

  • Lucas, W.J., Ding, B., van der School, C. (1993) Plasmodesmata and the supracellular nature of plants. New Phytol. 125, 435–476

    Google Scholar 

  • Nakamura, S., Hayashi, H., Mori, S., Chino, M. (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol. 34, 927–933

    Google Scholar 

  • Pfanner, N., Neupert, W. (1990) The mitochondrial protein import apparatus. Annu. Rev. Biochem. 59, 331–353

    Google Scholar 

  • Raven, J.A. (1991) Long-term functioning of enucleate sieve elements: possible mechanisms of damage avoidance and damage repair. Plant Cell Environ. 14, 139–146

    Google Scholar 

  • Sakuth, T., Schobert, C., Pecsvaradi, A., Eichholz, A., Komor, E., Orlich, G. (1993) Specific proteins in the sieve tube exudate of Ricinus communis L. seedlings: Separation, characterization and in vivo labelling. Planta 191, 207–213

    Google Scholar 

  • Schägger, H., von Jagow, G. (1987) Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–377

    Google Scholar 

  • Schliephacke, M., Kremp, A., Schmid, H.-P., Köhler, K., Kuli, U. (1991) Prosomes (proteasomes) of higher plants. Eur. J. Cell Biol. 55, 114–121

    Google Scholar 

  • Schobert, C., Komor, E. (1987) Amino acid uptake by Ricinus communis roots: characterization and physiological significance. Plant Cell Environ. 10, 493–500

    Google Scholar 

  • Seufert, W., Jentsch, S. (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9, 543–550

    Google Scholar 

  • Seufert, W., Jentsch, S. (1992) in vivo function of the proteasome in the ubiquitin pathway. EMBO J. 11, 3077–3080

    Google Scholar 

  • Simeon, A., van der Klei, I.J., Veenhuis, M., Wolf, D.H. (1992) Ubiquitin, a central component of selective cytoplasmic proteolysis, is linked to proteins residing at the locus of non-selective proteolysis, the vacuole. FEBS Lett. 301, 231–235

    Google Scholar 

  • Smith, L.M., Sabnis, D.D., Johnson, R.P.C. (1987) Immunocytochemical localisation of phloem lectin from Cucurbita maxima using peroxidase and colloidal gold labels. Planta 170, 461–470

    Google Scholar 

  • Vierling, E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620

    Google Scholar 

  • Vierstra, R.D. (1993) Protein degradation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 385–410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schobert.

Additional information

This research was supported by a TEMPUS grant European Community, Brüssel to E.K., which enabled the stay of A.P. The authors thank Dr. A. Bachmair (Institut für Botanik, Universität Wien, Austria), Prof. D. Wolf and Dr. A. Finger (Institut für Biochemie, Universität Stuttgart, Germany), Dr. S. Jentsch (Friedrich-Miescher Laboratorium, Max-Planck Institut Tübingen, Germany), Prof. U. Kull (Biologisches Institut, Universität Stuttgart, Germany), and Dr. T. Gatenby (Dupont, Wilmington, Del., USA) for generous supply of antisera used in this study. Improvement of English style was due to D. Schobert-Wiese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schobert, C., Großmann, P., Gottschalk, M. et al. Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta 196, 205–210 (1995). https://doi.org/10.1007/BF00201375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201375

Key words

Navigation