Skip to main content
Log in

Control of the appearance of ascorbate peroxidase (EC 1.11.1.11) in mustard seedling cotyledons by phytochrome and photooxidative treatments

  • Published:
Planta Aims and scope Submit manuscript

Abstract

In photosynthetic cells the plastidic ascorbate-glutathione pathway is considered the major sequence involved in the elimination of active oxygen species. Ascorbate peroxidase (APO; EC 1.11.1.11) is an essential constituent of this pathway. In the present paper control of the appearance of APO was studied in the cotyledons of mustard (Sinapis alba L.) seedlings with the following results: (i) Two isoforms of APO (APO I, APO II) could be separated by anion-exchange chromatography; APO I is a plastidic protein, while APO II is extraplastidic, very probably cytosolic. (ii) The appearance of APO is regulated by light via phytochrome. This control is observed with both isoforms. Moreover, a strong positive control over APO II appearance (very probably over APO II synthesis) is exerted by photooxidative treatment of the plastids. (iii) Additional synthesis of extraplastidic APO II is induced by a signal created by intraplastidic pigment-photosensitized oxidative stress. The response is obligatorily oxygen-dependent and abolished by quenchers of singlet oxygen such as α-tocopherol and p-benzoquinone. (iv) A short-term (4 h) photooxidative treatment suffices to saturate the signal. Signal transduction cannot be abolished or diminished by replacing the plants in non-photooxidizing conditions. Several observations indicate that control of APO synthesis by active oxygen is not an experimental artifact but a natural phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APO:

ascorbate-specific peroxidase (EC 1.11.1.11)

D:

darkness

FPLC:

fast protein liquid chromatography

FR:

far-red light (3.5 W · m−2)

NF:

Norflurazon

R:

red light (6.8 W · m−2)

References

  • Anderson, J.W., Foyer, C.H., Walker, D.A. (1983) Light-dependent reduction of hydrogen peroxide by intact spinach chloroplasts. Biochim. Biophys. Acta 724, 69–74

    Google Scholar 

  • Asada, K., Takahashi, M. (1987) Production and scavenging of active oxygen in photosynthesis. In: Topics in photosynthesis, vol. 9, pp. 227–288, Kyle, D.J., Osmond, C.B., Arntzen, C.J., eds. Elsevier, Amsterdam

    Google Scholar 

  • Bühler, B., Drumm, H., Mohr, H. (1978) Investigations on the role of ethylene in phytochrome-mediated photomorphogenesis. Planta 142, 109–117

    Google Scholar 

  • Chen, G.-X., Asada, K. (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30, 987–998

    Google Scholar 

  • Curtis, C.R., Howell, R.K. (1971) Increase in peroxidase isoenzyme activity in bean leaves exposed to low doses of ozone. Phytopathology 61, 1306–1307

    Google Scholar 

  • Curtis, C.R., Howell, R.K., Cremer, D.F. (1976) Soybean peroxidases from ozone injury. Environ. Pollut. 11, 189–194

    Google Scholar 

  • Drumm, H., Mohr, H. (1973) Control by phytochrome of glutathione reductase levels in the mustard seedling. Z. Naturforsch. 28c, 559–563

    Google Scholar 

  • Drumm-Herrel, H., Gerhäußer, U., Mohr, H. (1989) Differential regulation by phytochrome of the appearance of plastidic and cytoplasmatic isoforms of glutathione reductase in mustard (Sinapis alba L.) cotyledons. Planta 178, 103–109

    Google Scholar 

  • Elstner, E.F. (1984) Schadstoffe, die über die Luft zugeführt werden. In: Pflanzentoxikologie, pp. 64–94, Hock, B., Elstner, E.F., eds. Bibliographisches Institut, Mannheim

    Google Scholar 

  • Elstner, E.F. (1990) Der Sauerstoff, Biochemie, Biologie, Medizin. BI-Wissenschaftsverlag, Mannheim

    Google Scholar 

  • Elstner, E.F., Heupel, A. (1974) Lamellar Superoxide dismutase of isolated chloroplasts. Planta 123, 145–154

    Google Scholar 

  • Feierabend, J., Winkelhüsener, T. (1982) Nature of photooxidative events in leaves treated with chlorosis-inducing herbicides. Plant Physiol. 70, 1277–1282

    Google Scholar 

  • Foote, C.S. (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Free radicals in biology, vol. 2, pp. 85–133, Pryor, W.A. ed. Academic Press, New York

    Google Scholar 

  • Foyer, C.H., Halliwell, B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133, 21–25

    Google Scholar 

  • Foyer, C.H., Halliwell, B. (1977) Purification and properties of dehydroascorbate reductase from spinach leaves. Phytochemistry 16, 1347–1350

    Google Scholar 

  • Frosch, S., Jabben, M., Bergfeld, R., Kleinig, H., Mohr, H. (1979) Inhibition of carotenoid biosynthesis by the herbizide SAN 9789 and its consequences for the action of phytochrome on plastogenesis. Planta 145, 497–505

    Google Scholar 

  • Gaspar, T., Penel, C., Thorpe, T., Greppin, H. (1982) Peroxidases 1970–1980. Université de Genève, Geneva

    Google Scholar 

  • Gerhardt, B. (1964) Untersuchungen über Beziehungen zwischen Ascorbinsäure und Photosynthese. Planta 64, 101–129

    Google Scholar 

  • Gillham, D.J., Dodge, A.D. (1985) Chloroplast protection in greening leaves. Physiol. Plant. 65, 393–396

    Google Scholar 

  • Gillham, D.J., Dodge, A.D. (1987) Chloroplast Superoxide dismutase and hydrogen peroxide scavenging systems from pea leaves: seasonal variations. Plant Sci. 50, 105–109

    Google Scholar 

  • Greenberg, J.T., Monach, P., Chou, J.H., Josephy, P.D., Demple, B. (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 6181–6185

    Google Scholar 

  • Grill, D., Holzer, K., Esterbauer, H. (1985) Untersuchungen zur Variabilität des Peroxidase-Isoenzymmusters der Fichte und deren Brauchbarkeit für genetische Studien. Ang. Bot. 59, 233–237

    Google Scholar 

  • Groden, D., Beck, E. (1979) H2O2-destruction by ascorbate dependent systems from chloroplasts. Biochim. Biophys. Acta 546, 426–435

    Google Scholar 

  • Haber, F., Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London 147A, 332–351

    Google Scholar 

  • Halliwell, B. (1978) The Chloroplast at work: a review of modern developments in our understanding of Chloroplast metabolism. Prog. Biophys. Mol. Biol. 33, 1–54

    Google Scholar 

  • Halliwell, B. (1979) Oxygen-free-radicals in living systems. Dangerous but useful? In: Strategies of microbial life in extreme environments, pp. 195–221, Shilo, M. ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Halliwell, B., Foyer, C.H. (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139, 9–17

    Google Scholar 

  • Hossain, M.A., Asada, K. (1984) Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide; its protection by ascorbate. Plant Cell Physiol. 25, 1285–1295

    Google Scholar 

  • Hossain, M.A., Nakano, Y., Asada, K. (1984) Monodehydroascorbate dehydrogenase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25, 385–395

    Google Scholar 

  • Jablonski, P.P., Anderson, J.W. (1981) Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts. Plant Physiol. 67, 1239–1244

    Google Scholar 

  • Jablonski, P.P., Anderson, J.W. (1982) Light dependent reduction of hydrogen peroxide by ruptured pea chloroplasts. Plant Physiol. 69, 1407–1413

    Google Scholar 

  • Jackson, C., Dench, J., Moore, A.L., Halliwell, B., Foyer, C.H., Hall, D.O. (1978) Subcellular localization and identification of superoxide dismutase in the leaves of higher plants. Eur. J. Biochem. 91, 339–344

    Google Scholar 

  • Jennings, R.C., Forti, G. (1975) Involvement of oxygen during photosynthetic induction. In: Procs. 3rd Int. Congr. Photosynth., pp. 735–743, Avron, M., ed. Elsevier, Amsterdam

    Google Scholar 

  • Kalt-Torres, W., Burke, J.J., Anderson, J.M. (1984) Chloroplast glutathione reductase: purification and properties. Physiol. Plant. 61, 271–278

    Google Scholar 

  • Kelly, G.J., Latzko, E. (1979) Soluble ascorbate peroxidase. Naturwissenschaften 66, 617–618

    Google Scholar 

  • Khan, A.A., Malhotra, S.S. (1982) Peroxidase activity as an indicator of SO2 injury in jack pine and white birch. Biochem. Biophys. Pflanzen 177, 643–650

    Google Scholar 

  • Krinsky, N.I. (1979) Carotenoid protection against oxidation. Pure Appl. Chem. 51, 649–660

    Google Scholar 

  • Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382

    Google Scholar 

  • Marx, J.C. (1987) Oxygen free radicals linked to many diseases. Science 235, 529–531

    Google Scholar 

  • McCord, J.M., Fridovich, I. (1969) Superoxide dismutase. An enzyme function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055

    Google Scholar 

  • Mehlhorn, H. (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ. 13, 971–976

    Google Scholar 

  • Mehlhorn, H., Cottam, D.A., Lucas, P.W., Wellburn, A.R. (1987) Induction of ascorbate peroxidase and glutathione reductase activities by interactions of mixtures of air pollutants. Free Radical Res. Commun. 3, 193–197

    Google Scholar 

  • Miyake, C., Michihata, F., Asada, K. (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol. 32, 33–43

    Google Scholar 

  • Mohr, H. (1957) Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypokotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. Planta 49, 389–405

    Google Scholar 

  • Mohr, H. (1966) Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Z. Pflanzenphysiol. 54, 63–83

    Google Scholar 

  • Mohr, H. (1972) Lectures on photomorphogenesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mohr, H., Drumm-Herrel, H. (1981) Interaction between blue/UV-light and light operating through phytochrome in higher plants. In: Plants and the daylight spectrum, pp. 423–441, Smith, H., ed. Academic Press, New York London

    Google Scholar 

  • Nakano, Y., Asada, K. (1980) Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol. 21, 1295–1307

    Google Scholar 

  • Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880

    Google Scholar 

  • Nakano, Y., Asada, K. (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactiviation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28, 131–140

    Google Scholar 

  • Oelmüller, R. (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem. Photobiol. 49, 229–239

    Google Scholar 

  • Palma, J.M., Sandalio, L.M., Del Río, L.A. (1986) Manganese Superoxide dismutase and higher plant chloroplasts: a reappraisal of a controverted cellular localization. J. Plant Physiol. 125, 427–439

    Google Scholar 

  • Reiss, T., Bergfeld, R., Link, G., Thien, W., Mohr, H. (1983) Photooxidative destruction of chloroplasts and its consequences on cytosolic enzyme levels and plant development. Planta 159, 518–528

    Google Scholar 

  • Schopfer, P., Plachy, C. (1973) Die organspezifische Photodetermination der Entwicklung von Peroxydaseaktivität im Senfkeimling (Sinapis alba L.) durch Phytochrom. Z. Naturforsch. 28c, 296–301

    Google Scholar 

  • Schuster, C., Mohr, H. (1990) Appearance of nitrite-reductase mRNA in mustard seedling cotyledons is regulated by phytochrome. Planta 181, 327–334

    Google Scholar 

  • Schwitzguebel, J.P., Siegenthaler, P.A. (1984) Purification of peroxisomes and mitochondria from spinach leaf by percoll gradient centrifugation. Plant Physiol. 75, 670–674

    Google Scholar 

  • Shaaltiel, Y., Glazer, A., Bocion, P.F., Gressel, J. (1988) Cross tolerance to herbicidal and environmental oxidants of plantbiotypes tolerant to paraquat, sulfur dioxide, and ozone. Pest. Biochem. Physiol. 31, 13–23

    Google Scholar 

  • Simon, E.W. (1974) Phospholipids and plant membrane permeability. New Phytol. 73, 377–420

    Google Scholar 

  • Steiger, H.M., Beck, E., Beck, R. (1977) Oxygen concentration in isolated chloroplasts during photosynthesis. Plant Physiol. 60, 903–906

    Google Scholar 

  • Storz, G., Tartaglia, L.A., Ames, B.N. (1990) Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189–194

    Google Scholar 

  • Szigeti, Z., Vágujfalvi, D. (1984) Protection of chlorophyll against photobleaching by reductants. Photochem. Photobiophys. 7, 103–109

    Google Scholar 

  • Takahama, U. (1978) Suppression of lipid peroxidation by β-carotene in illuminated chloroplast fragments: Evidence for β-carotene as a quencher of singlet molecular oxygen in chloroplasts. Plant Cell Physiol. 19, 1391–1392

    Google Scholar 

  • Tanaka, K., Suda, Y., Kondo, N., Sugahara, K. (1985) O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol. 26, 1425–1431

    Google Scholar 

  • Tanaka, K., Takeuchi, E., Kubo, A., Sakaki, T., Haraguchi, K., Kawamura, Y. (1991) Two immunologically different isozymes of ascorbate peroxidase from spinach leaves. Arch. Biochem. Biophys 286, 371–375

    Google Scholar 

  • Tingey, D.T., Taylor, G.E. (1982) Variation in plant responses to ozone: a conceptional model of physiological effects. In: Effects of gaseous air pollutants in agriculture and horticulture, pp. 113–138, Unsworth, M.H., Ormrod, D.P., eds. Butterworths, London

    Google Scholar 

  • van Ginkel, G., Brown, J.S. (1978) Endogenous catalase and Superoxide dismutase activities in photosynthetic membranes. FEBS Lett. 94, 284–286

    Google Scholar 

  • Winkler, B.S. (1987) In vitro oxidation of ascorbic acid and its prevention by GSH. Biochim. Biophys. Acta 925, 258–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the Deutsche For-schungsgemeinschaft. B. Th. was the recipient of a stipend from the Studienstiftung des Deutschen Volkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, B., Drumm-Herrel, H. & Mohr, H. Control of the appearance of ascorbate peroxidase (EC 1.11.1.11) in mustard seedling cotyledons by phytochrome and photooxidative treatments. Planta 186, 600–608 (1992). https://doi.org/10.1007/BF00198042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198042

Key words

Navigation