Skip to main content
Log in

Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles

  • Published:
Planta Aims and scope Submit manuscript

Abstract

It has recently been proposed that H2O2-dependent peroxidative formation of phenolic cross-links between cell-wall polymers serves as a mechanism for fixing the viscoelastically extended wall structure and thus confers irreversibility to wall extension during cell growth (M. Hohl et al. 1995, Physiol. Plant. 94: 491–498). In the present paper the isolated cell wall (operationally, frozen/thawed maize coleoptile segments) was used as an experimental system to investigate H2O2-dependent cell-wall stiffening in vitro. Hydrogen peroxide inhibited elongation growth (in vivo) and decreased cell-wall extensibility (in vitro) in the concentration range of 10–10000 μmol·1−1. In rheological measurements with a constant-load extensiometer the stiffening effect of H2O2 could be observed with both relaxed and stressed cell walls. In-vitro cell-wall stiffening was a time-dependent reaction that lasted about 60 min in the presence of saturating concentrations of H2O2. The presence of peroxidase in the growth-limiting outer epidermal wall of the coleoptile was shown by histochemical assays. Peroxidase inhibitors (azide, ascorbate) suppressed the wall-stiffening reaction by H2O2 in vitro. Hydrogen peroxide induced the accumulation of a fluorescent, insoluble material in the cell walls of living coleoptile segments. These results demonstrate that primary cell walls of a growing plant organ contain all ingredients for the mechanical fortification of the wall structure by H2O2-inducible phenolic cross-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bolwell GP (1993) Dynamic aspects of the plant extracellular matrix. Int Rev Cytol 146: 261–324

    Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6: 1703–1712

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3: 1–30

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI, Lin L-S, Varner JE (1992) Ethylene effect on peroxidase distribution in pea. In: Reid PD, Pont-Lezica RF, del Campillo E, Taylor R (eds) Tissue printing. Tools for the study of anatomy, histochemistry, and gene expression. Academic Press, San Diego, Cal. pp 63–65

    Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37: 165–186

    Article  CAS  Google Scholar 

  • Goldberg R, Liberman M, Mathieu C, Pierron M, Catesson AM (1987) Development of epidermal cell wall peroxidases along the mung bean hypocotyl: possible involvement in the cell wall stiffening process. J Exp Bot 38: 1378–1390

    Google Scholar 

  • Griffing LR, Fowke LC (1985) Cytochemical localization of peroxidase in soybean suspension culture cells and protoplasts: intracellular vacuole differentiation and presence of peroxidase in coated vesicles and multivesicular bodies. Protoplasma 128:22–30

    Google Scholar 

  • Harris PJ, Hartley RD (1976) Detection of bound ferulic acid in cell walls of the gramineae by ultraviolet fluorescence microscopy. Nature 259: 508–510

    CAS  Google Scholar 

  • Hohl M, Schopfer P (1995) Rheological analysis of viscoelastic cell-wall changes in maize coleoptiles as affected by auxin and osmotic stress. Physiol Plant 94: 499–505

    Google Scholar 

  • Hohl M, Greiner H, Schopfer P (1995) The cryptic-growth response of maize coleoptiles and its relationship to H2O2-dependent cell-wall stiffening. Physiol Plant 94: 491–498

    Google Scholar 

  • Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104: 315–320

    Google Scholar 

  • Kamisaka S, Takeda S, Takahashi K, Shibata K (1990) Diferulic acid and ferulic acid in the cell wall of Avena coleoptiles — their relationship to mechanical properties of the cell wall. Physiol Plant 78:1–7

    Article  CAS  Google Scholar 

  • Kim S-H, Shinkle JR, Roux SJ (1989) Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings. Proc Natl Acad Sci USA 86: 9866–9870

    Google Scholar 

  • Kutschera U, Schopfer P (1985) Evidence against the acid-growth theory of auxin action. Planta 163: 483–493

    Google Scholar 

  • Kutschera U, Schopfer P (1986) Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles. Planta 167: 527–535

    Google Scholar 

  • MacAdam JW, Sharp RE, Nelson CJ (1992) Peroxidase activity in the leaf elongation zone of tall festuce. II. Spatial distribution of apoplastic peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol 99: 879–885

    Google Scholar 

  • Ray PM (1987) Principles of plant cell expansion. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during plant growth. Am Soc Plant Physiol Rockville, Md., pp 1–17

    Google Scholar 

  • Roberts K (1994) The plant extracellular matrix: in a new expansive mood. Curr Opinion Cell Biol 6: 688–694

    Google Scholar 

  • Schopfer P (1993) Determination of auxin-dependent pH changes in coleoptile cell walls by a null-point method. Plant Physiol 103: 351–357

    Google Scholar 

  • Schopfer P (1994) Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol 104: 1269–1275

    Google Scholar 

  • Shedletzky E, Shmuel M, Trainin T, Kalman S, Delmer D (1992) Cell wall structure in cells adapted to growth on the cellulosesynthesis inhibitor 2,6-dichlorobenzonitrile. A comparison between two dicotyledonous plants and a graminaceous monocot. Plant Physiol 100: 120–130

    Google Scholar 

  • Talbott LD, Ray PM (1992) Molecular size and separability features of pea cell wall polysaccharides. Plant Physiol 98: 357–368

    Google Scholar 

  • Tan K-S, Hoson T, Masuda Y, Kamisaka S (1992) Involvement of cell wall-bound diferulic acid in light-induced decrease in growth rate and cell wall extensibility of Oryza coleoptiles. Plant Cell Physiol 33: 103–108

    Google Scholar 

  • Zheng X, van Huystee RB (1992) Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Sci 81: 47–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft. I thank Ms. Bärbel Huvermann for expert technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schopfer, P. Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta 199, 43–49 (1996). https://doi.org/10.1007/BF00196879

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196879

Key words

Navigation