Skip to main content
Log in

Medullary reticular neurons in the Japanese toad: morphologies and excitatory inputs from the optic tectum

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    To elucidate the neural mechanisms that mediate visual responses of optic tectum (OT) to medullary and spinal motor systems, we analyzed medullary reticular neurons in paralyzed Japanese toads (Bufo japonicus). We examined their responses to electrical stimulation of OT, and stained some neurons intracellularly. Responses to stimulation of the glossopharyngeal nerve (IX) were also analyzed.

  2. 2.

    Extracellular single unit recording revealed excitatory responses of medullary neurons to OT and IX stimulation. Among 92 units encountered, 79 responded to OT stimuli, 10 to IX stimuli, and 3 to both. Some units responded to successive stimuli of short intervals with relatively stable lags.

  3. 3.

    Intracellular recording and staining experiments revealed morphologies of reticular neurons that received excitatory inputs from OT. Thirteen units were identified after complete reconstruction of somata and dendrites. Neurons in the nucleus reticularis medius received excitatory inputs from bilateral OT. They had wide dendrites in ventral, ventrolateral and lateral funiculi, and single axons descending in the ipsilateral ventral funiculus as far caudally as the cervical spinal cord. Some collaterals of these axons projected directly to the hypoglossal and spinal motor nuclei. Some neurons in other medullary nuclei (nuc. reticularis superior, pretrigeminal nucleus, nuc. reticularis inferior, and nuc. tractus spinalis nervi trigemini) also responded to the OT stimulation.

  4. 4.

    Activities in bilateral OT converge onto medullary reticular neurons, which may directly control medullary and spinal motor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPSPs :

excitatory postsynaptic potentials

fsol :

fasciculus solitarius

IPSPs :

inhibitory postsynaptic potentials

NtspV :

nucleus of the tractus nervi trigemini

OT :

optic tectum

PTN :

pretrigeminal nucleus

Ri :

nucleus reticularis inferior

Rm :

nucleus reticularis medius

Rs :

nucleus reticularis superior

IX :

glossopharyngeal nerve

XIIDMN :

dorsomedial nucleus of the hypoglossal nerve

References

  • Antal M (1985) The cobalt as a neuronal tracer. Acta Med Kinki Univ 10:1–10

    Google Scholar 

  • d'Ascanio P, Corvaja N (1981) Spinal projections from the rhombencephalon in the toad. Arch Ital Biol 119:139–150

    Google Scholar 

  • Ewert J-P (1967) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Z Vergl Physiol 54:455–481

    Google Scholar 

  • Ewert J-P (1980) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underly prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10:337–405

    Google Scholar 

  • Göres T, Antal M, Oláh E, Székely G (1979) An improved cobalt labeling technique with complex compounds. Acta Biol Acad Sci Hung 30:79–86

    Google Scholar 

  • Grobstein P (1988) Between the retinotectal projection and directed movement: topography of a sensorimotor interface. Brain Behav Evol 31:34–48

    Google Scholar 

  • Grobstein P, Comer C, Kostyk SK (1983) Frog prey-capture behavior: between sensory maps and directed motor outputs. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, London New York, pp 331–347

    Google Scholar 

  • Grüsser OJ, Grüsser-Cornehls U (1976) Physiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385

    Google Scholar 

  • Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 211–245

    Google Scholar 

  • Hanamori T, Ishiko N (1983a) Surface and intramedullary potentials evoked by stimulation of the glossopharyngeal nerve in frogs. Brain Res 260:51–60

    Google Scholar 

  • Hanamori T, Ishiko N (1983b) Intraganglionic distribution of the primary afferent neurons in the frog glossopharyngeal nerve and its transganglionic projection to the rhombencephalon studied by HRP method. Brain Res 260:191–199

    Google Scholar 

  • Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, London New York, pp 177–226

    Google Scholar 

  • Kostyk SK, Grobstein P (1987a) Neuronal organization underlying visually elicited prey orienting in the frog. I. Effects of various unilateral lesions. Neurosci 21:41–55

    Google Scholar 

  • Kostyk SK, Grobstein P (1987b) Neuronal organization underlying visually elicited prey orienting in the frog. II. Anatomical studies on the laterality of central projections. Neurosci 21:57–82

    Google Scholar 

  • Kostyk SK, Grobstein P (1987c) Neuronal organization underlying visually elicited prey orienting in the frog. III. Evidence for the existence of an uncrossed descending tectofugal pathway. Neurosci 21:83–96

    Google Scholar 

  • Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39

    Google Scholar 

  • Kusunoki M, Satou M, Oka Y, Matsushima T, Ueda K (1986) Neuroethological study of the calling behavior in the Japanese toad. Abstract of the First International Congress of Neuroethology (Tokyo), p 80

  • Lázár G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung 20:171–183

    Google Scholar 

  • Lázár G, Tóth P, Csank G, Kicliter E (1983) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling. J Comp Neurol 215:108–120

    Google Scholar 

  • Masino T, Grobstein P (1989a) The organization of descending tectofugal pathways underlying orienting in frog, Rana pipiens. I. Lateralization, parcellation, and an intermediate spatial representation. Exp Brain Res 75:227–244

    Google Scholar 

  • Masino T, Grobstein P (1989b) The organization of descending tectofugal pathways underlying orienting in frog, Rana pipiens. II. Evidence for the involvement of a tecto-tegmento-spinal pathway. Exp Brain Res 75:245–264

    Google Scholar 

  • Matesz C, Székely G (1978) The motor column and sensory projections of the branchial cranial nerves in the frog. J Comp Neurol 178:157–176

    Google Scholar 

  • Matsumoto N (1984) Cobaltic lysine as a neuronal tracer. Seitai no Kagaku 35:304–308

    Google Scholar 

  • Matsushima T, Satou M, Ueda K (1985a) Toad's snapping pathways: a search for the premotor interneurons. Zool Sci 2:874

    Google Scholar 

  • Matsushima T, Satou M, Ueda K (1985b) An electromyographic analysis of electrically-evoked prey-catching behavior by means of stimuli applied to the optic tectum in the Japanese toad. Neurosci Res 3:154–161

    Google Scholar 

  • Matsushima T, Satou M, Ueda K (1986) Glossopharyngeal and tectal influences on tongue-muscle motoneurons in the Japanese toad. Brain Res 365:198–203

    Google Scholar 

  • Matsushima T, Satou M, Ueda K (1988a) Medullary reticular neurons in the toad: tectal activation and axonal projection. Dobutsu Seiri (Jpn) 5:120

    Google Scholar 

  • Matsushima T, Satou M, Ueda K (1988b) Neuronal pathways for the lingual reflex in the Japanese toad. J Comp Physiol A 164:173–193

    Google Scholar 

  • Nakachi T, Ishiko N (1986) Gustatory signal processing in the glossopharyngeo-hypoglossal reflex arc of the frog. Jpn J Physiol 36:189–208

    Google Scholar 

  • Nieuwenhuys R, Opdam P (1976) Structure of the brain stem. In: Llinás R, Precht W (eds) Frog neurobiology, Springer, Berlin Heidelberg New York, pp 811–855

    Google Scholar 

  • Oka Y, Takeuchi H, Satou M, Ueda K (1987a) Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. J Comp Neurol 259:400–423

    Google Scholar 

  • Oka Y, Satou M, Ueda K (1987b) An improved method for correlative light and electron microscopic examination of cobalticlysine-labelled neurons. Neurosci Lett 73:187–191

    Google Scholar 

  • Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol 165:307–332

    Google Scholar 

  • Potter HD (1965) Mesencephalic auditory region of the bullfrog. J Neurophysiol 28:1132–1154

    Google Scholar 

  • Roth G (1987) Visual behavior in salamander. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roth G, Nishikawa K, Dicke U, Wake DB (1988) Topography and cytoarchitecture of the motor nuclei in the brainstem of salamanders. J Comp Neurol 278:181–194

    Google Scholar 

  • Roth G, Wake DB (1985) The structure of the brainstem and cervical spinal cord in lungless salamander (family Plethodontidae) and its relation to feeding. J Comp Neurol 241:99–110

    Google Scholar 

  • Rubinson K (1968) Projections of the tectum opticum of the frog. Brain Behav Ecol 1:529–561

    Google Scholar 

  • Satou M, Matsushima T, Kusunoki M, Oka Y, Ueda K (1981) Calling evoking area in the brain stem of the Japanese toad. Zool Mag 90:502

    Google Scholar 

  • Satou M, Matsushima T, Ueda K (1984) Neuronal pathways from the tectal ‘snapping-evoking area’ to the tongue-muscle-controlling motoneurons in the Japanese toad: evidence of the intervention of excitatory interneurons. Zool Sci 1: 829–832

    Google Scholar 

  • Satou M, Matsushima T, Takeuchi H, Ueda K (1985) Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the ‘snapping-evoking area’ in the optic tectum. J Comp Physiol A 157:717–737

    Google Scholar 

  • Schmidt RS (1974) Neural correlates of frog calling: trigeminal tegmentum. J Comp Physiol 92:229–254

    Google Scholar 

  • Schwippert WW, Ewert J-P (1987) Visual neurons in the medulla oblongata of common toads: intracellular recording and labeling. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. G. Thieme, Stuttgart New York

    Google Scholar 

  • Stuesse SL, Cruce WLR, Powell KS (1983) Afferent and efferent components of the hypoglossal nerve in the grass frog, Rana pipiens. J Comp Neurol 217:432–439

    Google Scholar 

  • Stuesse SL, Cruce WLR, Powell KS (1984) Organization within the cranial IX–X complex in ranid frogs: a horseradish peroxidase transport study. J Comp Neurol 222:358–365

    Google Scholar 

  • Takei K (1988) A neuroanatomical study of the feeding behavior in the Japanese toad. PhD thesis. Zool Inst Fac Sci Univ Tokyo, Japan

    Google Scholar 

  • Takei K, Oka Y, Satou M, Ueda K (1987) Distribution of motoneurons involved in the prey-catching behavior in the Japanese toad, Bufo japonicus. Brain Res 410:395–400

    Google Scholar 

  • Takei K, Matsushima T, Oka Y, Satou M, Ueda K (1988) Descending pathways to the bulbospinal region in the toad. Zool Sci 5:1199

    Google Scholar 

  • Takeuchi H, Satou M, Ueda K (1988) The central and peripheral control of jaw movements in the Japanese toad. J Physiol Soc Jpn 50:539

    Google Scholar 

  • ten Donkelaar HJ (1982) Organization of descending pathways to the spinal cord in amphibians and reptiles. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the spinal cord. Prog Brain Res 57:25–67

  • ten Donkelaar HJ, de Boer-van Huizen R (1982) Observations on the development of descending pathways from the brain stem to the spinal cord in the clawed toad Xenopus laevis. Anat Embryol 163:461–473

    Google Scholar 

  • Tuttle R, Masuko S, Nakajima Y (1987) Small vesicle bouton synapses on the distal half of the lateral dendrite of the goldfish Mauthner cell: freeze-fracture and thin section study. J Comp Neurol 265:254–274

    Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    Google Scholar 

  • Wake DB, Nishikawa K, Dicke U, Roth G (1988) Organization of the motor nuclei in the cervical spinal cord of salamanders. J Comp Neurol 278:195–208

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toads' optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144:429–434

    Google Scholar 

  • Weerasuriya A (1983) Snapping in toads: some aspects of sensorimotor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 613–627

    Google Scholar 

  • Wilczynski W, Northcutt RG (1983) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173:219–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushima, T., Satou, M. & Ueda, K. Medullary reticular neurons in the Japanese toad: morphologies and excitatory inputs from the optic tectum. J Comp Physiol A 166, 7–22 (1989). https://doi.org/10.1007/BF00190205

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00190205

Key words

Navigation