Skip to main content
Log in

Spinal bone mineral density by quantitative CT in a normal Italian population

  • Original Articles
  • Musculoskeletal Radiology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to describe the normal cross-sectional pattern of spinal bone loss associated with aging in an Italian population and to compare these values to the American normative database. A group of 472 healthy subjects (382 females and 90 males) were recruited for bone mineral density (BMD) assessment by quantitative computed tomography (QCT). To eliminate technique-related differences in a comparison of Italian and American normal values obtained with two different scanners we performed a cross-calibration analysis scanning the same computerized imaging reference system (CIRS) phantom at both centers. The results of the cross-calibration study using the CIRS phantom were used to compare regression slopes of BMD with age and age-adjusted mean BMD of American men and women vs cross-calibrated Italian men and women. American men and women decrease more rapidly vs Italian men and women, and Italian men have significantly lower age-adjusted mean BMD than American men. For these reasons we recommend normal values to be locally obtained for an Italian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Concensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94: 646–650

    Article  PubMed  Google Scholar 

  2. Cummings SR, Black DM, Rubin SM (1989) Lifetime risk of hip, Colles', or vertebral fracture and coronary heart disease among white post menopausal women. Arch Intern Med 149: 2445–2448

    Google Scholar 

  3. Kleerekoper M, Nelson DA, Peterson EL, Tilley BC (1992) Outcome variables in osteoporotic trials. Bone 13 (S): 29–34

    Google Scholar 

  4. Snyder W, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IN (1977) Report of the Task Group on Reference Man. ICRP 23 (Oxford), Pergamon Press, pp 75–79

    Google Scholar 

  5. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67: 328–335

    Google Scholar 

  6. Parfitt AM (1992) Implications of architecture for the pathogenesis and prevention of vertebral fractures. Bone 13: 41–47

    Google Scholar 

  7. Frost HM (1964) Dynamics of bone remodeling. In: Frost HM (ed) Bone biodynamics. Little, Brown and Co., Boston, pp 315–334

    Google Scholar 

  8. Rockoff SD, Sweet E, Blueshern J (1969) The relative contribution of trabecular and cortical to the strength of human vertebrae. Comput Tomogr Res 3: 163–175

    Google Scholar 

  9. Nottestad SY, Baumel JJ, Kummel DB, Recker RR, Heaney RP (1987) The proportion of trabecular bone in human vertebrae. J Bone Miner Res 2: 221–229

    Google Scholar 

  10. Jones CD, Laval-Jeantet AM, Laval-Jeantet MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8: 201–206

    Google Scholar 

  11. Ruegsegger P, Elsasser U, Anliker M, Gnehm H, Kind HP, Prader A (1976) Quantification of bone mineral mineralization using computed tomography. Radiology 121: 93–97

    Google Scholar 

  12. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4: 493–500

    Google Scholar 

  13. Firooznia H, Golimbu C, Rafii M, Schwartz M, Alterman ER (1984) QCT of spinal trabecular bone: age-related regression in normal men and women. J Comput Assist Tomogr 8: 91–97

    Google Scholar 

  14. Genant HK, Block JE, Steiger P, Glüer CC (1987) Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK (ed) Osteoporosis update 1987. University of California San Francisco, Radiology Research and Education Foundation, pp 49–71

  15. Steiger P, Block JE, Steiger S, Heuck AF, Friedlander A, Ettinger B, Harris ST, Glüer CC, Genant HK (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level, and technique. Radiology 175: 537–543

    Google Scholar 

  16. Genant HK, Faulkner KG, Glüer CC (1991) Measurement of bone mineral density: current status. Am J Med 91 (S 5B): 49–53

    Google Scholar 

  17. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. Lancet 341: 72–75

    Article  CAS  PubMed  Google Scholar 

  18. Mazess RB, Barden HS (1991) Bone density in premenopausal women: effect of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 53: 132–142

    Google Scholar 

  19. Hansen MA, Overgaard K, Riis BJ, Christiansen C (1991) Potential risk factors for development of postmenopausal osteoporosis examined over a 12-year period. Osteoporosis Int 1: 95–102

    Google Scholar 

  20. Liel Y, Edwards J, Shary J (1988) Effect of race and body habitus on bone mineral density of the radius, hip, and spine in premenopausal women. J Clin Endocrinol Metab 66: 1247–1250

    Google Scholar 

  21. Reid IR, Mackie M, Ibbertson HK (1986) Bone mineral content in Polynesian and white New Zealand women. Br Med J 292: 1547–1548

    Google Scholar 

  22. Pocock NA, Eisman JA, Hopper JL, Yeates M, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80: 706–710

    CAS  PubMed  Google Scholar 

  23. Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8: 1–9

    Google Scholar 

  24. Kelly PJ, Nguyen T, Hopper J, Pocock N, Sambrook P, Eisman J (1993) Changes in axial bone density with age: a twin study. J Bone Miner Res 8: 11–17

    CAS  PubMed  Google Scholar 

  25. Cann CE (1987) QCT applications: comparison of current scanners. Radiology 162: 257–261

    Google Scholar 

  26. Suzuki S, Yamamuro T, Okumura H, Yamamoto I (1991) Quantitative computed tomography: comparison study using different scanners with two calibration phantoms. Br J Radiol 64: 1001–1006

    Google Scholar 

  27. Nilsson M, Johnell O, Johnsson K, Redlund-Johnell I (1988) Quantitative computed tomography in measurement of vertebral trabecular bone mass. Acta Radiol 29: 719–725

    Google Scholar 

  28. Compston JE, Evans WD, Crawley EO, Evans C (1988) Bone mineral content in normal UK subjects. Br J Radiol 61: 631–636

    Google Scholar 

  29. Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference value for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 9: 75–80

    Google Scholar 

  30. Karantanas AH, Kalef-Ezra JA, Glaros DC (1991) Quantitative computed tomography for bone mineral measurement: technical aspects, dosimetry, normal data and clinical applications. Br J Radiol 64: 298–304

    Google Scholar 

  31. Cammisa M, Guglielmi G, De Nicolò M, Giannatempo GM, Bonetti MG, Dicembrino MA (1992) Determinazione del contenuto minerale osseo mediante QCT. In: Sci Arch CSS (ed) Radiologia Scheletrica 7. San Giovanni Rotondo (FG), pp 259–270

    Google Scholar 

  32. Harbison J, Daly L, Murphy B, Mc Coy C, Masterson J (1992) Normal bone density in Irish women: is American normative data suitable for use in Ireland? Ir J Med Sci 16: 66–69

    Google Scholar 

  33. Gudmundsdottir H, Jonsdottir B, Kristinsson S, Johannesson A, Goodenough D, Sigurdsson G (1993) Vertebral bone density in Icelandic women using quantitative computed tomography without an external reference phantom. Osteoporosis Int 3: 84–89

    Google Scholar 

  34. Ortolani S, Trevisan C, Bianchi ML, Caraceni MP, Ulivieri FM, Gandolini G, Montesano A, Polli EE (1991) Spinal and forearm bone mass in relation to ageing and menopause in healthy Italian women. Eur J Clin Invest 21: 33–39

    Google Scholar 

  35. Block JE, Smith R, Glüer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4: 249–257

    Google Scholar 

  36. Luckey MM, Meier DE, Mandeli JP, Da Costa MC, Hubbard MC, Goldsmith SJ (1989) Radial and vertebral bone density in white and black women: evidence for racial differences in premenopausal bone homeostasis. J Clin Endocrinol Metab 69: 762–770

    Google Scholar 

  37. De Simone DP, Stevens J, Edwards J, Shary J, Gordon L, Bell NH (1989) Influence of body habitus and race on bone mineral density of the midradius, hip and spine in aging women. J Bone Miner Res 4: 827–830

    Google Scholar 

  38. Melton III LJ (1993) Epidemiology of age-related fractures. In: Avioli LV (ed) The osteoporotic syndrome: detection, prevention, and treatment, 3rd edn. Wiley-Liss New York, pp 17–38

    Google Scholar 

  39. Tobias JH, Cook D, Chambers TJ, Dalzell N (1993) Low spinal bone mass in Asian women reflects their small skeletal size. J Bone Miner Res 8: S330

    Google Scholar 

  40. Ribot C, Tremolliers F, Poullies JM, Louvet JP, Guiraud R (1988) Influence of the menopause and aging on spinal density in French women. Bone Miner 5: 89–97

    Google Scholar 

  41. Mazess RB, Barden HS, Ettinger M, Johnston C, Dawson-Hughes B, Baran D, Powell M, Notelovitz M (1987) Spine and femur density using dual-photo absorptiometry in US white women. Bone Miner 2: 211–219

    Google Scholar 

  42. Davis JW, Ross PD, Wasnich RD, Maclean CJ, Vogel JM (1989) Comparison of cross-sectional and longitudinal measurements of age-related changes in bone mineral content. J Bone Miner Res 4: 351–357

    CAS  PubMed  Google Scholar 

  43. Duboeuf F, Braillon P, Chapuy MC, Haond P, Hardouin C, Meary MF, Delmas PD, Meunier PJ (1991) Bone mineral density of the hip measured with dual-energy X-ray absorptiometry in normal elderly women and in patients with hip fracture. Osteoporosis Int 1: 242–249

    Google Scholar 

  44. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK (1992) Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 7: 625–632

    Google Scholar 

  45. Mazees RB, Vetter J (1985) The influence of marrow on measurement of trabecular bone using computed tomography. Bone 6349–351

  46. Cann CE, Genant HKM, Kolb FO, Ettinger BF (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6: 1–7

    Google Scholar 

  47. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB (1986) Influence of vertebral fat content on quantitative CT density. Radiology 159: 463–466

    Google Scholar 

  48. Burgess AE, Colborne B, Zoffmann E (1987) Vertebral trabecular bone: comparison of single and dual-energy CT measurements with chemical analysis. J Comput Assist Tomogr 11: 506–515

    Google Scholar 

  49. Glüer C C, Reiser UJ, Davis CA, Rutt BK, Genatnt HK (1988) Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements. J Comput Assist Tomogr 12: 242–258

    Google Scholar 

  50. Güer CC, Genant HK (1989) Impact of marrow fat on accuracy of quantitative CT. J Comput Assist Tomogr. 13: 1023–1035

    Google Scholar 

  51. Pacifici R, Susman N, Carr PL, Birge SJ, Avioli LV (1987) single and dual energy tomographic analysis of spinal trabecular bone: a comparative studyin normal and osteoporotic women. J Clin Endocrinol Metab 64: 209–214

    Google Scholar 

  52. Jahng JS, Kang KS, Park SW, Han MH (1991) Assessment of bone mineral density in postmenopausal and senile osteoporosis using quantitative CT. Orthopedics 14: 1101–1105

    Google Scholar 

  53. Fujii Y, Tsutsumi M, Tsunenari T, Fukase M, Yoshimoto Y, Fujita T., Genant HK (1989) Quantitative computed tomoraphy of lumbar vertebrate in Japanese patients with osteoporosis. Bone Miner 6: 87–94

    Google Scholar 

  54. Hegsted DM (1986) Calcium and osteoporosis. J Nutr 116: 2316–2319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: G. Guglielmi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guglielmi, G., Giannatempo, G.M., Blunt, B.A. et al. Spinal bone mineral density by quantitative CT in a normal Italian population. Eur. Radiol. 5, 269–275 (1995). https://doi.org/10.1007/BF00185311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00185311

Key words

Navigation