Skip to main content
Log in

Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belfort M (1990) Phage T4 introns: self-splicing and mobility. Annu Rev Genet 24:363–385

    Google Scholar 

  • Bell-Pedersen D, Quirk SM, Aubrey M, Belfort M (1989) A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4. Gene 82:119–126

    Google Scholar 

  • Bonen L, Boer PH, McIntosh JE, Gray MW (1987) Nucleotide sequence of the wheat mitochondrial gene for subunit I of cytochrome oxidase. Nucleic Acids Res 15:6734

    Google Scholar 

  • Bonfante-Fasolo P (1984) Anatomy and morphology of VA mycorrhizae. In: Powell CL, Bagyaraj DJ (eds) VA Mycorrhiza. CRC Press, Boca Raton, FL pp 5–33

    Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255:11927–11941

    Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM, Gonzalex D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogen Evol 1:231–241

    Google Scholar 

  • Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group I introns. Nucleic Acids Res 15:7217–7221

    Google Scholar 

  • Capaldi RA, Malatesta F, Darley-Usmar VM (1983) Structure of cytochrome c oxidase. Biochim Biophys Acta 726:135–148

    Google Scholar 

  • Clark-Walker GD (1992) Evolution of mitochondrial genomes in fungi. Int Rev Cytol 141:89–127

    Google Scholar 

  • Clyman J, Belfort M (1992) Trans and cis requirements for intron mobility in a prokaryotic system. Genes Dev 6:1269–1279

    Google Scholar 

  • Covello PS, Gray MW (1992) Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer. EMBO J 11:3815–3820

    Google Scholar 

  • Cummings DJ, Michel F, McNally KL (1989) DNA sequence analysis of the 24.5 kilobase pair cytochrome oxidase subunit I mitochondrial gene from Podospora anserina: a gene with sixteen introns. Curr Genet 16: 381–406

    Google Scholar 

  • Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402

    Google Scholar 

  • Delahodde A, Goguel V, Becam AM, Creusot F, Perea J, Banroques J, Jacq C (1989) Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell 56:431–441

    Google Scholar 

  • Donoghue MJ (1994) Progress and prospects in reconstructing plant phylogeny. Ann Missouri Bot Gard 81:405–418

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation for small quantities of fresh tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author, Dept of Genetics, University of Washington, Seattle

    Google Scholar 

  • Fox GE, Woese CR (1975) 5S RNA secondary structure. Nature 256: 505–507

    Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    Google Scholar 

  • Grohmann L, Brennicke A, Schuster W (1992) The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera. Nucleic Acids Res 20:5641–5646

    Google Scholar 

  • Hardy CM, Clark-Walker GD (1991) Nucleotide sequence of the coxI gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron. Curr Genet 20:99–114

    Google Scholar 

  • Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 59:277–290

    Google Scholar 

  • Hiesel R, von Haeseler A, Brennicke A (1994) Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc Natl Acad Sci 91:634–638

    Google Scholar 

  • Kidwell MG (1993) Lateral transfer in natural populations of eukaryotes. Annu Rev Genet 27:235–256

    Google Scholar 

  • Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573

    Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622

    Google Scholar 

  • Lang BF (1984) The mitochondrial genome of the fission yeast Schizosaccharomyces pombe: highly homologous introns are inserted at the same position of the otherwise less conserved coxI genes in Schizosaccharomyces pombe and Aspergillus nidulans. EMBO J 3: 2129–2136

    CAS  PubMed  Google Scholar 

  • Lang BF (1993) The mitochondrial genome of Schizosaccharomyces pombe. In: O'Brien SJ (ed) Genetic maps, 6th ed, book 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 3.118–3.119

    Google Scholar 

  • Li M, Tzagoloff A (1979) Assembly of the mitochondrial membrane system. Sequences of yeast mitochondrial valine—and an unusual threonine tRNA gene. Cell 18:47–53

    Google Scholar 

  • Lonergan KM, Gray MW (1994) The ribosomal RNA gene region in Acanthamoeba castellanii mitochondrial DNA. A case of evolutionary transfer of introns between mitochondria and plastids? J Mol Biol 239:476–499

    Google Scholar 

  • Michel F, Dujon B (1986) Genetic exchanges between bacteriophage T4 and filamentous fungi? Cell 46:323

    Google Scholar 

  • Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    Google Scholar 

  • Muscarella DE, Ellison EL, Ruoff BM, Vogt VM (1990) Characterization of I-Ppo, an intron-encoded endonuclease that mediates homing of a group I intron in the ribosomal DNA of Physarum polycephalum. Mol Cell Biol 10:3386–3396

    Google Scholar 

  • Nobrega F, Tzagoloff A (1980) Assembly of the mitochondrial membrane system. DNA sequence and organization of the cytochrome b gene in Saccharomyces cerevisiae D273–1013. J Biol Chem 255: 9828–9837

    Google Scholar 

  • Noller HF, Kop JA, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, Woese CR (1981) Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res 9:6167–6189

    Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  CAS  PubMed  Google Scholar 

  • Nugent JM, Palmer JD (1993) Evolution of gene content and gene organization in flowering plant mitochondrial DNA: a general survey and further studies on coxII gene transfer to the nucleus. In: Brennicke A, Kuck U (eds) Plant mitochondria. VCH Publishers, New York, pp 163–170

    Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    CAS  PubMed  Google Scholar 

  • Ohta E, Oda K, Yamato K, Nakamura Y, Takemura M, Nozato N, Akashi K, Ohyama K, Michel F (1993) Group I introns in the liverwort mitochondrial genome: the gene coding for subunit 1 of cytochrome oxidase shares five intron positions with its fungal counterparts. Nucleic Acids Res 21:1297–1305

    CAS  PubMed  Google Scholar 

  • Ohyama K, Oda K, Ohta E, Takemura M (1993) Gene organization and evolution of introns of a liverwort, Marchantia polymorpha, mitochondrial genome. In: Brennicke A, Kuck U (eds) Plant mitochondria. VCH Publishers, New York, pp 115–129

    Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48

    Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants. vol 7A. The molecular biology of plastids. Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Paquin B, Lang BF (1993) The mitochondrial genome of Allomyces macrogynus. In: O'Brien SJ (ed) Genetic maps, 6th ed. book 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 3.130–3.132

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Schuster W, Brennicke A (1994) The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Annu Rev Plant Physiol Plant Mol Biol 45:61–78

    Google Scholar 

  • Smith MW, Feng D-F, Doolittle RF (1992) Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci 17:489–493

    Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign

    Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double strand-break repair model for recombination (review). Cell 33: 25–35

    Google Scholar 

  • Trinkl H, Wolf K (1986) The mosaic coxI gene in the mitochondrial genome of Schizosaccharomyces pombe: minimal structural requirements and evolution of group I introns. Gene 45:289–297

    Google Scholar 

  • Turmel M, Mercier J-P, Cote M-J (1993a) Group I introns interrupt the chloroplast psaB and psbC and the mitochondrial rrnL gene in Chlamydomonas. Nucleic Acids Res 21:5242–5250

    Google Scholar 

  • Turmel M, Gutell RR, Mercier JP, Otis C, Lemieux C (1993b) Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites. J Mol Biol 232: 446–467

    Google Scholar 

  • Waring RB, Brown TA, Ray JA, Scazzocchio C, Davies RW (1984) Three variant introns of the same general class in the mitochondrial gene for cytochrome oxidase subunit I in Aspergillus nidulans. EMBO J 3:2121–2128

    Google Scholar 

  • Wilmotte A, van de Peer Y, Goris A, Chapelle S, de Baere R, Nelissen B, Neefs J-M, Hennebert GL, de Wachter R (1993) Evolutionary relationships among higher fungi inferred from small ribosomal subunit RNA sequence analysis. System Appl Microbiol 16:436–444

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Google Scholar 

  • Wolff G, Burger G, Lang BF, Kuck U (1993) Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns. Nucleic Acids Res 21:719–726

    CAS  PubMed  Google Scholar 

  • Xu MQ, Kathe SD, Goodrich-Blair H, Nierzwicki-Baerr SA, Shub DA (1990) The prokaryotic origin of a chloroplast intron: a self-splicing group I intron in the gene for tRNA-Leu (UAA) of cyanobacteria. Science 250:1566–1570

    Google Scholar 

  • Zambryski P, Tempe J, Schell J (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids. Cell 56: 193–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: J.C. Vaughn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughn, J.C., Mason, M.T., Sper-Whitis, G.L. et al. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia . J Mol Evol 41, 563–572 (1995). https://doi.org/10.1007/BF00175814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175814

Key words

Navigation