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Abstract. Bagging predictors is a method for generating multiple versions of a predictor and using these to get 
an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and 
does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of 
the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and 
regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. 
The vital element is the instability of the prediction method. If perturbing the learning set can cause significant 
changes in the predictor constructed, then bagging can improve accuracy. 
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1. Introduction 

A learning set o f £  consists of data {(y,~, x~),  7~ = 1 . . . .  , N} where the y's are either class 
labels or a numerical response. Assume we have a procedure for using this learning set to 
form a predictor 9v(x, £)  - -  if the input is x we predict y by ~d(x, £).  Now, suppose we 
are given a sequence of learnings sets {£k } each consisting of N independent observations 
from the same underlying distribution as £.  Our mission is to use the {£~} to get a better 
predictor than the single learning set predictor 9:(x,/2). The restriction is that all we are 
allowed to work with is the sequence of predictors {~(x,  £k)}. 

If y is numerical, an obvious procedure is to replace c;(x, £)  by the average of 97(x, £k) 
over k, i.e. by 9;A(X) -- E£9:(x, £) where E£ denotes the expectation over £, and the 
subscript A in C;A denotes aggregation. If 9~(x, £)  predicts a class j E { 1 , . . . ,  J},  then 
one method of aggregating the ~y(x, Z~) is by voting. Let "\4 = nr{k; ~(x ,  £#) = j}  and 
take 9~A(X) = a rgmaxjNj ,  that is, the j for which ~,\~- is maximum. 

Usually, though, we have a single learning set £ without the luxury of replicates of £. 
Still, an imitation of the process leading to ~#A can be done. Take repeated bootstrap samples 
{£(8)}  from £, and form {g;(x, £(8))} .  I f y  is numerical, take ~B as 

~ B ( x )  = a v s . ( x ,  z::('/). 

If y is a class label, let the {~(x,  £ ( s ) )}  vote to form ~;a(x). We call this procedure 
"bootstrap aggregating" and use the acronym bagging. 

The {£(a)}  form replicate data sets, each consisting of N cases, drawn at random, but 
with replacement, from £.  Each (y,~, x,~) may appear repeated times or not at all in any 

particular £(B). The {£(B)} are replicate data sets drawn from the bootstrap distribution 
approximating the distribution underlying £. For background on bootstrapping, see Efron 
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and Tibshirani [1993]. A critical factor in whether bagging will improve accuracy is the 
stability of the procedure for constructing ~. If changes in/2, i.e. a replicate £, produces 
small changes in g:, then ~B will be close to c 2. Improvement will occur for unstable 
procedures where a small change in £ can result in large changes in cy. Instability was 
studied in Breiman [1994] where it was pointed out that neural nets, classification and 
regression trees, and subset selection in linear regression were unstable, while k-nearest 
neighbor methods were stable. 

For unstable procedures bagging works well. In Section 2 we bag classification trees on 
a variety of data sets. The reduction in test set misclassification rates ranges from 6% to 
77%. In Section 3 regression trees are bagged with reduction in test set mean squared error 
on data sets ranging from 21% to 46%. Section 4 goes over some theoretical justification 
for bagging and attempts to understand when it will or will not work well. This is illustrated 
by the results of Section 5 on subset selection in linear regression using simulated data. 
Section 6 gives concluding remarks. These discuss how many bootstrap replications are 
useful, bagging nearest neighbor classifiers and bagging class probability estimates. The 
Appendix gives brief descriptions of the data sets. 

The evidence, both experimental and theoretical, is that bagging can push a good but 
unstable procedure a significant step towards optimality. On the other hand, it can slightly 
degrade the performance of stable procedures. There has been recent work in the literature 
with some of the flavor of bagging. In particular, there has been some work on averaging 
and voting over multiple trees. Buntine [1991] gave a Bayesian approach, Kwok and Carter 
[1990] used voting over multiple trees generated by using alternative splits, and Heath et al. 
[1993] used voting over multiple trees generated by alternative oblique splits. Dietterich 
and B akiri [ 1991] showed that a method for coding many class problems into a large number 
of two class problems increases accuracy. There is some commonality of this idea with 
bagging. 

2. Bagging Classification Trees 

2.1. Results for Moderate Sized Data Sets 

Bagging was applied to classification trees using the following data sets 
waveform (simulated) 
heart 
breast cancer (Wisconsin) 
ionosphere 
diabetes 
glass 
soybean 

All of these except the heart data are in the UCI repository (ftp to ics.uci.edu/pub/machine- 
learning-databases). Table 1 gives a numerical summary of the data sets and brief descrip- 
tions are contained in the Appendix: 
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Table 1. Data Set Summary 

Data Set # Samples # Variables # Classes 

waveform 300 21 3 
heart 1395 16 2 
breast cancer 699 9 2 
ionosphere 351 34 2 
diabetes 768 8 2 
glass 214 9 6 
soybean 683 35 t 9 

In all runs the following procedure was used: 

i) The data set is randomly divided into a test set T and a learning set £ .  In the real data 
sets T is 10% of the data. In the simulated waveform data, 1800 samples are generated. 
Z; consists of 300 of  these, and T the remainder. 

ii) A classification tree is constructed from E using lO-fold cross-validation. Running the 
test set T down this tree gives the misclassification rate es(£,  T). 

iii) A bootstrap sample £tz is selected from £,  and a tree grown using £B.  The original 
learning set £ is used as test set to select the best pruned subtree (see Section 4.3). This 
is repeated 50 times giving tree classifiers (Pl ( x ) , . . . ,  050 (x) .  

iv) If ( j~,  x,~) E T ,  then the estimated class of Xn is that class having the plurality in 

01(x~) , . . . ,  05o(x~). If  there is a tie, the estimated class is the one with the lowest 
class label. The proportion of times the estimated class differs from the true class is the 
bagging misclassification rate eB(£, T). 

v) The random division of the data into £ and T is repeated 100 times and the reported 
#s,  gB are the averages over the 100 iterations. For the waveform data, 1800 new cases 
are generated at each iteration. Standard errors of #s and gB over the 100 iterations are 
also computed. 

Table 2 gives the values of es ,  eB, and Table 3 their estimated standard errors. 

Table 2. Misclassification Rates (%) 

Data Set e s  eB Decrease 

waveform 29.1 19.3 34% 
heart 4.9 2.8 43% 
breast cancer 5.9 3.7 37% 
ionosphere I 1.2 7.9 29% 
diabetes 25.3 23.9 6% 
glass 30.4 23.6 22% 
soybean 8.6 6.8 21% 
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Table 3. Standard Errors of Misclassi- 
fication 

Data Set SE(~S) SE(~B) 

waveforIn .2 .1 
heart .2 .1 
breast cancer .3 .2 
ionosphere .5 .4 
diabetes .4 .4 
glass 1.1 .9 
soybean .4 .3 

For the waveform data, its known that the lowest possible error rate is 14%. Bagging 
reduces the excess error by about two-thirds. We conjecture that the small decrease in the 
diabetes data set is because bagging is pushing close to the minimal attainable error rate. 
For instance, in the comparison by Michie et al. [1994] of  22 classifiers on this data set, 
the smallest error rate achieved (estimated by 12-fold cross-validation) was 22.3%. 

2.2. Statlog Comparisons for Larger Data Sets 

The Statlog Project [Michie et al., 1994] compared 22 classification methods over a wide 
variety of data sets. For most of these data sets, error rates were estimated using a single 
cross-validation. Without knowing the random subdivisions used in these cross-validations, 
the variability in the resulting error estimates makes comparisons chancey. 

However, there were larger data sets used in the project which were divided into training 
and test sets. Four are publically available, and we used these as a basis for comparison. 
They can be accessed by ftp to ftp.strath.ac.uk and are described both in the Michie et al. 
[ 1994] book and in the data repository. Their numerical characteristics are given in Table 
4 with brief descriptions in the Appendix. 

Table 4. Statlog Data Set Summary 

Data Set #Training #Variables #Classes #Test Set 

letters 15,000 16 26 5000 
satellite 4,435 36 6 2000 
shuttle 43,500 9 7 14,500 
DNA 2,000 60 3 1186 

In each data set, a random 10% of the training set was set aside and a tree grown on the 
other 90%. The set aside 10% was then used to select the best pruned subtree. In bagging, 
50 bootstrap replicates of the training set were generated and a large tree grown on each 
one. The original training set is used to select the best pruned subtree (see Section 4.3). 
The test set errors are listed in Table 5. 
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Table 5. Test Set Misclassification Rates 
(%) 

Data Set es e5, Decrease 

letters 12.6 6.4 49% 
satellite 14.8 10.3 30% 
shuttle .062 .014 77% 
DNA 6.2 5.0 19% 

Compared to the 22 classifiers in the Statlog Project, bagged trees ranked 2nd in accuracy 
on the DNA data set, 1st on the shuttle, 2nd on the satellite and 1st on letters. Following 
the Statlog method of ordering classifiers by their average rank, bagged trees was the top 
classifier on these four data sets with an average rank of  1.8. The next highest of the 22 has 
an average rank of 6.3. Average ranks for well-known classifiers are given in Table 6. 

Table 6. Average Ranks of Classifiers 

Algorithm Average Rank 

Radial Basis Functions 8.0 
K-NN 8.5 
C4.5 9.3 
Quad. Discriminant 10.8 
Neural Net 12.3 

Some of the misclassification rates for the CART algorithm in Table 5 differ from those 
listed in the Statlog results. Possible sources for these differences are: 

i) Different strategies may have been used to grow and prune the tree. I used the 90%- 10% 
method specified above. Its not clear what was done in the Statlog project. 

ii) An important setting is the minimum node size. This setting is not specified in the 
Statlog project. We used a minimum node size of one throughout. 

iii) In the DNA data, different preprocessing of the input variable was used (see Appendix).  

3. Bagging Regression Trees 

Bagging trees was used on five data sets with numerical responses. 

Boston Housing 
Ozone 
Friedman #1 (simulated) 
Friedman #2 (simulated) 
Friedman #3 (simulated) 
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Table 7. Summary of Data Sets 

Data Set #Cases # Variables # Test Set 

Boston Housing 506 12 51 
Ozone 330 8 33 
Friedman # l 200 l 0 1000 
Friedman #2 200 4 1000 
Friedman #3 200 4 1000 

A summary of these data sets is given in Table 7. 

Brief descriptions of the data are in the Appendix.  A procedure similar to that used in 
classification was followed: 

i) Each real data set is randomly divided into a test set of consisting of 10% of the data 
and a learning set 12 consisting of the other 90%. In the 3 simulated data sets, 1200 
cases are generated, 200 used as learning and 1000 as test. 

ii) A regression tree is constructed from 12 using 10-fold cross-validation. Running the 
test set down this tree gives the squared error es(12, T) .  

iii) A bootstrap sample 12B is selected from 12 and a tree grown using 12 B and 12 used to select 
the pruned subtree. This is repeated 25 times giving tree predictors ¢1 ( x ) , . . . ,  ~25 (X). 

iv) For (b~,  a:~) E T ,  the bagged predictor is ~)~ = a'vk4k(az~), and the squared error 
eB(12, T )  is av'~(y~ - / )n )  2 

v) The random division of the data into 12 and T is repeated 100 times and the errors 
averaged to give ~s,  gB. For the simulated data, the 1200 cases are newly generated 

for each repetition. 

Table 8 lists the values of es, eB, and Table 9 gives their estimated standard errors. 

Table 8. Mean Squared Test Set Error 

Data Set ~s ~B Decrease 

Boston Housing 20.0 11.6 42% 
Ozone 23.9 18.8 21% 
Friedman #1 11.4 6.1 46% 
Friedman #2 31,100 22,100 29% 
Friedman #3 .0403 .0242 40% 
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Table 9. Standard Errors 

Data Set SE(Es) SE([B ) 

Boston Housing 1.0 .6 
Ozone .8 .6 
Friedman # 1 .10 .06 
Friedman #2 300 100 
Friedman #3 .0005 .0003 

4. Why Bagging Works 

4.1. Numeric Prediction 

Let each (y, x) case in £ be independently drawn from the probability distribution P. 
Suppose Y is numerical and 0(x,  £) the predictor. Then the aggregated predictor is the 
average over £ of O(x, £), i.e. 

: E£o(x ,  £). 

Take x to be a fixed input value and Y an output value. Then 

E£(y - O(x, £))2 = y2 _ 2yE£¢(x, £) + Eco2(x,  £). (4.1) 

Using E£o(x,  £) : OA(X) and applying the inequality E Z  2 >_ (EZ) 2 to the third term 
in (4.1) gives 

E £ ( y -  e(x, £))2 k ( Y -  OA(X)) 2. (4.2) 

Integrating both sides of (4.2) over the joint Y, x output-input distribution, we get that the 
mean-squared error of ¢A(X) is lower than the mean-squared error averaged over £ of 
¢(x,£). 

How much lower depends on how unequal the two sides of 

£)12 < Ec  (z, £) 

are. The effect of instability is clear. If g(x,  £) does not change too much with replicate £ 
the two sides will be nearly equal, and aggregation will not help. The more highly variable 
the ~(x,  £) are, the more improvement aggregation may produce. But #A always improves 
on ~2. 

Now CA depends not only on x but also the underlying probability distribution P from 
which £ is drawn, i.e. OA = ~A(X, P). But the bagged estimate is not ~A(X, P), but 
rather 

=  A(x, P£), 

where P £  is the distribution that concentrates mass 1IN at each point (Yn, x~) E £, (iP£ 
is called the bootstrap approximation to P). Then ~B is caught in two currents: on the one 
hand, if the procedure is unstable, it can give improvement through aggregation. On the 
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other side, if the procedure is stable, then ~B = ~A(X, P/2) will not be as accurate for data 
drawn from P as ~A(X, P) ~- ~(x,/2). 

There is a cross-over point between instability and stability at which C2B stops improving 
on 02(x,/2) and does worse. This has a vivid illustration in the linear regression subset 
selection example in the next section. There is another obvious limitation of bagging. For 
some data sets, it may happen that ~ (x , /2 )  is close to the limits of accuracy attainable on 
that data. Then no amount of  bagging will do much improving. This is also illustrated in 
the next section. 

4.2. Classification 

In classification, a predictor ~ (x ,  £ )  predicts a class label j E { 1 , . . . ,  J} .  Denote 

Q(j lx )  = P(O(x,  c)  = j) .  

The interpretation of Q(jlx) is this: over many independent replicates of the learning set 
/2, 4~ predicts class label j at input x with relative frequency Q(jlx). Let P(jlx) be the 
probability that input x generates class j .  Then the probability that the predictor classifies 
the generated state at x correctly is 

~_, Q(jlx)P(jlx) .  (4.3) 

J 

The overall probability of correct classification is 

2 

where Px (dx) is the x probability distribution. 
Looking at (4.3) note that for any Q(jlx), 

Q ( j l x ) P ( j I x )  <_ maxP(jlx) 
3 

J 

with equality only if 

1 if P(j lx  ) = max~ P(ilx ) 
Q(J lx )  = 0 else 

The predictor 6" (x)  = argmaxjP(j Ix) (known as the Bayes predictor) leads to the above 
expression for Q (j Ix) and gives the highest attainable correct classification rate: 

3 

Call 4) order-correct at the input x if 

a rgm axj Q (jlx) = a rgmaxj  P (jlx). 
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This means that if input x results in class j more often than any other class, then 0 also 
predicts class j at x more often than any other class. An order-correct predictor is not nec- 
essarily an accurate predictor. For instance, in a two class problem, suppose P(1  [x) = . 9, 
P ( 2 l x  ) = .1 and Q ( l l x  ) = .6, Q(2[x)  = .4. Then the probability of correct classification 
by q) at x is .58, but the Bayes predictor gets correct classification with probability .90. 

The aggregated predictor is: hA(X) = argmaxjQ(jlx). For the aggregated predictor 
the probability of correct classification at x is 

~-~ I(argmaxiQ(ilx ) j )P(jIx)  (4.4) 

J 

where I ( . )  is the indicator function. I f 0  is order-correct at x,  then (4.4) equals max j  P(jlx). 
Letting C be the set of all inputs x at which (5 is order-correct, we get for the correct 
classification probability of CA the expression 

= [ maxP( j [x )Px(dx)+ { [ Z  I ( O A ( X ) =  j )P(j lx)]Px(x) .  ~ d 
.Ix cc 3 JxEc' j 

Even if ¢ is order-correct at x its correct classification rate can be far from optimal. But 
0,4 is optimal. If a predictor is good in the sense that it is order-correct for most inputs 
x,  then aggregation can transform it into a nearly optimal predictor. On the other hand, 
unlike the numerical prediction situation, poor predictors can be transformed into worse 
ones. The same behavior regarding stability holds. Bagging unstable classifiers usually 
improves them. Bagging stable classifiers is not a good idea. 

4.3. Using the Learning Set as a Test Set 

In bagging trees, the training set £ s  is generated by sampling from the distribution P£. 
Using £B a large tree T is constructed. The standard CART methodology finds the sequence 
of minimum cost pruned subtrees o fT .  The "best" pruned subtree in this sequence is selected 
using either cross-validation or a test set, 

The idea of a test set is that it is formed by independently sampling from the same 
underlying distribution that gave rise to the learning set. In the present context, a test set 
is formed by independently sampling from PC' i.e. we can get a test set by sampling with 
replacement, from the original learning set 12. 

Consider sampling, with replacement, a large number of times N '  from 12. If  k(n) is 
the number of  times that (y~, x,~) is selected, then the intuitive content of my argument is 
that k(n)/k(n') ~ 1, i.e. each case (y~, x, ,)  will be selected about the same number of 
times (ratio-wise) as any other case. Thus, using a very large test set sampled from P12 is 
equivalent to just using 12 as a test set. 

A somewhat more convincing argument is this: if there are N cases (Y~, x~)  then the 
number of  times any particular (y,~, x,~) is selected has a binomial distribution with p = 
l /N ,  and N '  trials. The expected number of times (y,~, x,~) is selected is N'p = N' /N.  
The standard deviation of the number of times (y~, x,,) is selected is ,/-~7pq ~ ~ / N .  
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Thus, for all n, 
1 + o(1). 

The fact that £ can be used as a test set for predictors grown on a bootstrap sample £B 
is more generally useful than just in a tree predictor context. For instance, in neural nets 
early stopping depends on the use of a test set. Thus, in bagging neural nets, the optimal 
point of early stopping can be estimated using the original learning set as a test set. 

5. A Linear Regress ion Il lustration 

5.1. Forward Variable Selection 

Subset selection in linear regression gives an illustration of the points made in the previous 
section. With data of the form £ = {(y~,x,~), n = 1 , . . . , N }  where x = ( x l , . . . , z M )  
consists of M predictor variables, a popular prediction method consists of forming predictors 
~1 ( x ) , . . . ,  ~:t/i (x) where ~m is linear in ~: and depends on only m of the M x-variables. 
Then one of the {c2m } is chosen as the designated predictor. For more background, see 
Breiman and Spector [1992]. 

A common method for constructing the {~m}, and one that is used in our simulation, 
is forward variable entry. If  the variables used in ~k are xT,~I, • • -, zm~, then for each 
m ~ { m l , . . . ,  ink} form the linear regression of y on ( X ~ l , . . . ,  z , ~ ,  x,~), compute the 
residual sum-of-squares RSS(m) and take x~k+ ~ such that mk+l  minimizes RSS(m) and 
~k+l  (x) the linear regression based on (x,~a,...,  x~+~). 

There are other forms of variable selection e.g. best subsets, backwards variable selection, 
and variants thereof. What is clear about all of  them is that they are unstable procedures 
(see Breiman [1994]). The variables are competing for inclusion in the {~m} and small 
changes in the data can cause large changes in the {~,~}. 

5.2. Simulation Structure 

The simulated data used in this section are drawn from the model. 

where e is N(0,  1) (normally distributed with mean zero and variance one). The number 
of variables M = 30 and the sample size is 60. The {xm} are drawn from a mean-zero 
joint normal distribution with E X i X j  = pli-jl and at each iteration, p is selected from a 
uniform distribution on [0, 1]. 

It is known that subset selection is nearly optimal if there are only a few large non-zero 
.3m, and that its performance is poor if there are many small but non-zero ,G,~. To bridge 
the spectrum, three sets of coefficients are used. Each set of coefficients consists of three 
clusters; one is centered at m = 5, one at m = 15 and the other at rrz = 25. Each cluster is 
of the form 

. . . .  , a 0  
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where k is the cluster center, and h = 1, 3, 5 for the first, second and third set of coefficients 
respectively. Thus, for h = 1, there are only three non-zero {.3r,~}. For h = 3 there are 
15 non-zero {,~,~}, and for h = 5, there are 27 non-zero {~,~}, all relatively small. The 
normalizing constant c is taken so that the R 2 for the data is ~_ .75 where R is the correlation 
between the output variable y and the full least squares predictor. 

For each set of coefficients, the following procedure was replicated 250 times: 

i) Data £ = {(Y~z, xn) ,  n = 1 . . . . .  60} was drawn from the model 

where the {xm } were drawn from the joint normal distribution described above. 

ii) Forward entry of variables was done using £ to get the predictors ~1 ( x ) , . . . ,  i :al (x),  
The mean-squared prediction error of each of these was computed giving e t , . . . ,  eM. 

iii) Fifty bootstrap replicates {£(B)} o f £  were generated. For each of these, forward step- 
wise regression was applied to construct predictors {~dl(X, £ ( s ) ) , . . . ,  ~2M (x, £(B))}.  

These were averaged over the £(s) to give the bagged sequence ~ s )  ( x ) , . .  ( s ) , . ,  -, ~M b~c) • 

The prediction errors e{ s)  e (s) for this sequence were computed. 

These computed mean-squared-errors were averaged over the 250 repetitions to give two 

sequences {~(,{)}, {8},u)}. For each set of coefficients, these two sequences are plotted vs. 
rrz in Figure l a,b,c. 

5.3. Discussion of Simulation Results 

Looking at Figures l a,b,c, an obvious result is that the most accurate bagged predictor is 
at least as good as the most accurate subset predictor. When h = 1 and subset selection is 
nearly optimal, there is no improvement, For h = 3 and 5 there is substantial improvement. 
This illustrates the obvious: bagging can improve only if the unbagged is not optimal. 

The second point is less obvious. Note that in all three graphs there is a point past which 
the bagged predictors have larger prediction error than the unbagged. The explanation is 
this: linear regression using all variables is a fairly stable procedure. The stability decreases 
as the number of variables used in the predictor decreases. As noted in Section 4, for a 
stable procedure ~ s  = #:A(X, P£) is not as accurate as ~ --~ ~ (x ,  P) .  The higher values 

of ~(,~) for large m reflect this fact. As m decreases, the instability increases and there is 

a cross-over point at which ~:!~) becomes more accurate than ~,~. 

6. Concluding Remarks 

6.1. Bagging Class Probability Estimates 

Some classification methods estimate probabilities/5(j Ix) that an object with prediction vec- 
tor x belongs to class j .  Then the class corresponding to x is estimated as arg max j / ? ( j  Ix). 
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Prediction Error for Subset Selection and Bagged Subset Selection 
vs. Number of Variables 
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Figure 1. Prediction error for subset selection and bagged subset selection. 
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For such methods, a natural competitor to bagging by voting is to average the ;B(jJx) over all 

bootstrap replications, getting fib (j I x), and then use the estimated class arg maxj/5/3 (j Ix). 
This estimate was computed in every classification example we worked on. The resulting 
misclassification rate was always virtually identical to the voting misclassification rate. 

In some applications, estimates of class probabilities are required instead of, or along 
with, the classifications. The evidence so far indicates that bagged estimates are likely to 
be more accurate than the single estimates. To verify this, it would be necessary to compare 
both estimates with the true values p*(j lx)  over the x in the test set. For real data the true 
values are unknown. But they can be computed for the simulated waveform data, where 
they reduce to computing an expression involving error functions. 

Using the waveform data, we did a simulation similar to that in Section 2 with learning 
and test sets both of size 300, and 25 bootstrap replications. In each iteration, we computed 
the average over the test set and classes of I[~(jlx) P*(jlx)l  and It)B(jlx) - p*(jlx')]. 
This was repeated 50 times and the results averaged. The single tree estimates had an error 
of .  189. The error of the bagged estimates was.  124, a decrease of 34%. 

6.2. How Many Bootstrap Replicates Are Enough? 

In our experiments, 50 bootstrap replicates was used for classification and 25 for regression. 
This does not mean that 50 or 25 were necessary or sufficient, but simply that they seemed 
reasonable. My sense of it is that fewer are required when y is numerical and more are 
required with an increasing number of classes. 

The answer is not too important when procedures like CART are used, because running 
times, even for a large number of bootstraps, are very nominal. But neural nets progress 
much more slowly and replications may require many days of computing. Still, bagging is 
almost a dream procedure for parallel computing. The construction of a predictor on each 
£(B) proceeds with no communication necessary from the other CPU's. 

To give some ideas of what the results are as connected with the number of bootstrap 
replicates we ran the waveform data using 10, 25, 50 and 100 replicates using the same 
simulation scheme as in Section 2. The results appear in Table 10, 

Tuble lO. Bagged Misclassification Rates (%) 

No. Bootstrap Replicates Misclassification Rate 

10 21.8 
25 19.4 
50 19.3 

100 19.3 

The unbagged rate is 29.1, so its clear that we are getting most of the improvement using 
only l0 bootstrap replicates. More than 25 bootstrap replicates is love's labor lost. 
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6.3. How Big Should the Bootstrap Learning Set Be? 

In all of our runs we used bootstrap replicates £(B) of the same size as the initial learning 
set/2. While a bootstrap replicate may have 2, 3 , . . .  duplicates of a given instance, it also 
leaves out about .37 of the instances. A reader of the technical report on which this paper is 
based remarked that this was an appreciable loss of data, and that accuracy might improve 
if a larger bootstrap set was used. We experimented with bootstrap learning sets twice the 
size of £.  These left out about e -2 = ,14 of the instances. There was no improvement in 
accuracy. 

6.4. Bagging Nearest Neighbor Classifiers 

Nearest neighbor classifiers were run on all the data sets described in Section 2 except for 
the soybean data whose variables were nominal. The same random division into learning 
and test sets was used with 100 bootstrap replicates, and 100 iterations in each run. A 
Euclidean metric was used with each coordinate standardized by dividing by its standard 
deviation over the learning set. See Table 11 for the results. 

Table 11. Misclassification 
Rates for Nearest Neighbor 

Data Set ~s  eB 

waveform 26.1 26.1 
heart 5.1 5.1 
breast cancer 4.4 4.4 
ionosphere 36.5 36.5 
diabetes 29.3 29.3 
glass 30.1 30.1 

Nearest neighbor is more accurate than single trees in 3 of the 6 data sets, but bagged trees 
are more accurate in all of the 6 data sets. 

Cycles did not have to be expended to find that bagging nearest neighbors does not change 
things. Some simple computations show why. Given N possible outcomes of a trial (the 
N cases (y~, x~) in the learning set) and N trials, the probability that the nth outcome is 
selected 0, 1, 2 , . . .  times is approximately Poisson distributed with A = 1 for large N.  The 
probability that the nth outcome will occur at least once is 1 - ( l / e )  -~ .632. 

If there are NB bootstrap repetitions in a 2-class problem, then a test case may change 
classification only if its nearest neighbor in the learning set is not in the bootstrap sample 
in at least half of the N s  replications, This probability is given by the probability that the 
number of heads in N s  tosses of a coin with probability .632 of heads is less than .SNB. 
As NB gets larger, this probability gets very small. Analogous results hold for J-class 
problems. 

The stability of nearest neighbor classification methods with respect to perturbations of 
the data distinguishes them from competitors such as trees and neural nets. 
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6.5. Conclusions 

Bagging goes a ways toward making a silk purse out of a sow's ear, especially if the sow's 
ear is twitchy. It is a relatively easy way to improve an existing method, since all that needs 
adding is a loop in front that selects the bootstrap sample and sends it to the procedure 
and a back end that does the aggregation. What one loses, with the trees, is a simple and 
interpretable structure. What one gains is increased accuracy. 

Appendix 

Descriptions of Data Sets 

A. Classification Data Sets 

Waveform This is simulated 21 variable data with 300 cases and 3 classes each having 
probability 1/3. It is described in Breiman et al [1984] (a C subroutine tbr generating the 
data is in the UCI repository subdirectory/waveform). 

Heart This is data from the study referred to in the opening paragraphs of the CART book 
(Breiman et. al. [1984]). To quote: 

At the University of California, San Diego Medical Center, when a heart attack patient 
is admitted, 19 variables are measured during the first 24 hours. These include blood 
prcssure, age, and 17 other ordered and binary variables summarizing the medical 
symptoms considered as important indicators of the patient's condition. 

The goal of a recent medical study (see Chapter 6) was the development of a method 
to identify high risk patients (those who will not survive at least 30 days) on the basis 
of the initial 24-hour data. 

The data base has also been studied in Olshen et al [1985]. It was gathered on a project 
(SCOR) headed by John Ross Jr. Elizabeth Gilpin and Richard Olshen were instrumental in 
my obtaining the data. The data used had 18 variables. Two variables with high proportions 
of  had missing data were deleted, together with a few other cases that missing values. This 
left 779 complete cases - -  77 deaths and 702 survivors. To equalize class sizes, each case 
of  death was replicated 9 times giving 693 deaths for a total of 1395 cases. 

Breast Cancer This is data given to the UCI repository by Willian H. Wolberg, University 
of Wisconsin Hospitals, Madison (see Wolberg and Mangasarian [1990]). It is two class 
data with 699 cases (458 benign and 241 malignant). It has 9 variables consisting of cellular 
characteristics. 

Ionosphere This is radar data gathered by the Space Physics Group at Johns Hopkins 
University (see Sigillito et. al. [1989]). There are 351 cases with 34 variables, consisting 
of 2 attributes for each at 17 pulse numbers. There are two classes: good = some type of 
structure in the ionosphere (226); bad = no structure (125). 



138 L. BREIMAN 

Diabetes This is a data base gathered among the Pima Indians by the National Institute of 
Diabetes and Digestive and Kidney Diseases. (See Smith et. al. [1988]). The data base 
consists of 768 cases, 8 variables and two classes. The variables are medical measurements 
on the patient plus age and pregnancy information. The classes are: tested positive for 
diabetes (268) or negative (500). 

Glass This data base was created in the Central Research Establishment, Home Office 
Forensic Science Service Aldermaston, Reading, Berkshire. Each case consists of 9 chem- 
ical measurements on one of 6 types of glass. There are 214 cases. 

Soybean The soybean data set consists of 683 cases, 35 variables and 19 classes. The 
classes are various types of soybean diseases. The variables are observations on the plants 
together with some climatic variables. All are nominal. Some missing values were filled 
in by their modal values. 

Letters This data set was constructed by David J. Slate, Odesta Corporation. Binary 
pixel displays of the 26 capital English letters were created using 20 different fonts and 
then randomly distorted to create 20,000 images. Sixteen features, consisting of statistical 
moments and edge counts, were extracted from each image. 

Satellite This is data extracted from Landsat images. For the 3 x 3 pixel area examined, 
intensity readings are given in 4 spectral bands for each pixel. The middle pixel is classified 
as one of 6 different soil types. The multiple authorship of the data set is explained in the 
documentation in the repository. 

Shuttle This data set involves shuttle controls concerning the position of radiators within 
the Space Shuttle. The data originated from NASA and was provided to the archives by J. 
Catlett. 

DNA The classes in this data set are types of boundaries in a spliced DNA sequence. The 
input variables consists of a window of 60 nucleotides each having one of 4 categorical 
values (A, G, C, T). The problem is to classify the middle point of the window as one of 
two types of boundaries or neither. The data is part of the Genbank and was donated by G. 
Towell, M. Noordewier and J. Shavlik. 

Because some classifiers in the Statlog project could accept only numeric inputs, each of 
the 60 categoricals was coded into 3 binary variables, resulting in 180 input variables. For 
reasons not explained, some of the tree algorithms run on the DNA data were given the 60 
categoricals as input while the CART algorithm was given the 180 binary inputs. In my 
runs the 60 categorical inputs were used. 

B. Regression Data Sets 

Boston Housing This data became well-known through its use in the book by Belsley, 
Kuh, and Welsch [1980]. It has 506 cases corresponding to census tracts in the greater 
Boston area. The y-variable is median housing price in the tract. There are 12 predictor 
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variables, mainly socio-economic. The data has since been used in many studies. (UCI 
repository/housing). 

Ozone The ozone data consists of 366 readings of  maximum daily ozone at a hot spot 
in the Los Angeles basin and 9 predictor variables - -  all meteorlogical, i.e. temperature, 
humidity, etc. It is described in Breiman and Friedman [1985] and has also been used in 
many subsequent studies. Eliminating one variable with many missing values and a few 
other cases leaves a data set with 330 complete cases and 8 variables. 

Friedman #1 All three Friedman data sets are simulated data that appear in the MARS 
paper (Friedman [1991]). In the first data set, there are ten independent predictor variables 
z l , . . . ,  z lo  each of which is uniformly distributed over [0, 1]. The response is given by 

= 10 sin(7r:ClX2) + 20(:r 3 - .5) :?̀  + 10x4 + 5&5 + e 

where e is N(0,  1). Friedman gives results for this model for sample sizes 50, 100, 200. 
We use sample size 200. 

Friedman #2, #3 These two examples are taken to simulate the impedance and phase shift 
in an alternating current circuit. They are 4 variable data with 

#2 = ( x f  + (:~2~~ - ( 1 / - 2 - ~ ) ) ~ )  */~ + ~ 

#3 y = tan-l (z2z3 - (1/z2z4) ) + 

where :cl, z2, z3, z4 are uniformly distributed over the ranges 

0 ~ 32 1 ~ 100 

20 < (~2/2~) _< %0 

0 _< z 3 < 1  

1 < ~ ' 4 < 1 1  

The noise e2, e3 are distributed as N(0,  cr,~), AT(0, o-~) with cr2, o3 selected to give 3:1 
signal/noise ratios. 
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