Skip to main content
Log in

Cloning and nucleotide sequence of a D,L-haloalkanoic acid dehalogenase encoding gene from Alcaligenes xylosoxidans ssp. denitrificans ABIV

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

We have cloned DNA fragments of plasmid pFL40 from Alcaligenes xylosoxidans ssp. denitrificans ABIV encoding a D,L-2-haloalkanoic acid halidohydrolase (DhlIV). A 6.5-kb EcoRI/SalI-fragment with inducible expression of the halidohydrolase was cloned in Pseudomonas fluorescens and Escherichia coli. A 1.9-kb HindII-fragment demonstrated expression of the dehalogenase only due to the presence of the promoter from the pUC vector in Escherichia coli. The nucleotide sequence of this DNA-fragment was determined. It had an open reading frame coding for 296 amino acid residues (molecular weight of 32783 D). The dhlIV gene showed sequence homology to a short segment of a D-specific dehalogenase (hadD) from Pseudomonas putida AJ1, but not to any other known DNA sequences. Restriction enzyme patterns indicated similarity between dhlIV and the D,L-isomer specific dehI dehalogenase gene from Pseudomonas putida PP3. There are some indications from restriction enzyme patterns and initial sequencing data, that a gene encoding a σ54 activator protein, similar to the dehR Iregulatory gene from Pseudomonas putida PP3 is located upstream of dhlIV. In contrast to DehI, dehalogenation of D-or L-chloropropionic acid by the DhlIV-protein leads to lactic acid of inverted configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison N, Skinner AJ & Cooper RA (1983) The dehalogenase of a 2,2-dichloropropionate-degrading bacterium. J. Gen. Microbiol. 129: 1283–1293.

    Google Scholar 

  • Barth PT, Bolton L & Thomson JC (1992) Cloning and partial sequencing of an operon encoding two Pseudomonas putida haloalkanoate dehalogenases of opposite stereospecificity. J. Bacteriol. 174: 2612–2619.

    Google Scholar 

  • Bergmann JG & Sanik J (1957) Determination of trace amounts of chlorine in naphtha. Analytical Chem. 29: 241–243.

    Google Scholar 

  • Brokamp A & Schmidt FRJ (1991) Survival of Alcaligenes xylosoxidans degrading 2,2-dichloropropionate and horizontal transfer of its halidohydrolase gene in a soil microcosm. Curr. Microbiol. 22: 299–306.

    Google Scholar 

  • Brokamp A, Schwarze R & Schmidt FRJ (1996) Homologous plasmids from soil bacteria encoding D, L-halidohydrolases. Curr. Microbiol., in press.

  • Cairns SS, Cornish A & Cooper RA (1996) Cloning, sequencing and expression in Escherichia coli of two Rhizobium sp. genes encoding haloalkanoate dehalogenases of opposite stereospecificity. Eur. J. Biochem. 235: 744–749.

    Google Scholar 

  • Clewell DB & Helinski DR (1969) Supercoiled circular DNA-protein complex in E. coli: Purification and induced conversion to an open circular DNA form. Proc. Natl. Acad. Sci. USA 62: 1159–1166.

    Google Scholar 

  • Dower WJ, Miller JF & Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127–6145.

    Google Scholar 

  • Fetzner S & Lingens F (1994) Bacterial dehalogenases: Biochemistry, genetics, and biotechnological applications. Microbiol. Rev. 58: 641–685.

    Google Scholar 

  • Fiedler S & Wirth R (1988) Transformation of bacteria with plasmid DNA by electroporation. Anal. Biochem. 170: 38–44.

    Google Scholar 

  • Hardman DJ, Gowland PC & Slater JH (1986) Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl. Environm. Microbiol. 51: 44–51.

    Google Scholar 

  • Hardman DJ (1991) Biotransformation of halogenated compounds. Crit. Rev. Biotechnol. 11: 1–40.

    Google Scholar 

  • Hasan AKMQ, Takada H, Koshikawa H, Liu JQ, Kurihara T, Esaki N & Soda K (1994) Two kinds of 2-halo acid dehalogenases from Pseudomonas sp. YL induced by 2-chloroacrylate and 2-chloropropionate. Biosci. Biotech. Biochem. 58: 1599–1602.

    Google Scholar 

  • Itoh Y & Haas D (1985) Cloning vectors derived from the Pseudomonas plasmid pVS1. Gene 36: 27–36.

    Google Scholar 

  • Janssen DB, Scheper A & Witholt B (1984) Biodegradation of 2-chlorethanol and 1,2-dichlorethane by pure bacteria cultures (pp 169–178). Innov. Biotech. Elsevier. Sci. Publishers B V Amsterdam.

    Google Scholar 

  • Janssen DB, Pries F & van derPloeg JR (1994) Genetics and biochemistry of dehalogenating enzymes. Annu. Rev. Microbiol. 48: 163–191.

    Google Scholar 

  • Jensen HL (1957) Decomposition of chloro-substituted aliphatic acids by soil bacteria. Can. J. Microbiol. 3: 151–164.

    Google Scholar 

  • Jones DHA, Barth PT, Byrom D & Thomas CM (1992) Nucleotide sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase of Pseudomonas putida strain AJ1 and purification of the encoded protein. J. Gen. Microbiol. 138: 675–683.

    Google Scholar 

  • Kado CI & Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365–1373.

    Google Scholar 

  • Kawasaki H, Yahara H & Tonomura K (1981) Isolation and characterization of plasmid pUO1 mediating dehalogenation of haloacetate and mercury resistance in Moraxella sp. B. Agric. Biol. Chem. 45: 1477–1481.

    Google Scholar 

  • Kawasaki H, Tsuda K, Matsushita I & Tonumura K (1992) Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B. J. Gen. Microbiol. 138: 1317–1323.

    Google Scholar 

  • Kawasaki H, Toyama T, Maeda T, Nishino H & Tonumura K (1994) Cloning and sequence analysis of a plasmid-encoded 2-haloacid dehalogenase gene from Pseudomonas putida No. 109. Biosci. Biotech. Biochem. 58: 160–163.

    Google Scholar 

  • Kersters K & DeLey J (1984) Section 4. Genus Alcaligenes. In: Krieg NR & Holt JG (Eds), Bergey's Manual of Systematic Bacteriology, Vol 1 (pp 361–373). Williams & Wilkins, Baltimore.

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Leigh JA, Skinner AJ & Cooper RA (1988) Partial purification, stereospecificity and stoichiometry of three dehalogenases from a Rhizobium species. FEMS Micro biol. Lett. 49: 353–356.

    Google Scholar 

  • Little M & Williams PA (1971) A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. Eur. J. Biochem. 21: 99–109.

    Google Scholar 

  • Morett E & Segovia L (1993) The σ54 bacterial enhancer-binding protein family: Mechanisms of action and phylogenetic relationship of their functional domains. J. Bacteriol. 175: 6067–6074.

    Google Scholar 

  • Motosugi K, Esaki N & Soda K (1982) Bacterial assimilation of D- and L-2- chloropropionates and occurrence of a new dehalogenase. Acta. Microbiol. 131: 179–183.

    Google Scholar 

  • Motosugi K, Esaki N & Soda K (1982) Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp., J. Bacteriol. 150: 522–527.

    Google Scholar 

  • Murdiyatmo U, Asmara W, Tsang JSH, Baines AJ, Bull AT & Hardman DJ (1992) Molecular biology of the 2-haloacid halidohydrolase IVa from Pseudomonas cepacia MBA4. Biochem. J. 284: 87–93.

    Google Scholar 

  • Nardi-Dei V, Kurihara T, Okamura T, Liu JQ, Koshikawa H, Ozaki H, Terashima Y, Esaki N & Soda K (1994) Comparative studies of genes encoding thermostable L-2-halo acid dehalogenase from Pseudomonas sp. YL, other dehalogenases, and two related hypothetical proteins from Escherichia coli. Appl. Environm. Microbiol. 60: 3375–3380.

    Google Scholar 

  • Noll F. (1984) Metabolites, 1. Carbohydrates. In: Bergmeyer HU (Ed), Methods of Enzymatic Analysis, Vol. 6 (pp 582–588). Verlag Chemie, Weinheim.

    Google Scholar 

  • Panayotatos N (1987) Engineering an efficient expression system. In: Hardy KG (Ed) Plasmids: A Practical Approach (pp 163–176). IRL Press, Oxford, Washington D.C.

    Google Scholar 

  • Rüther U (1982) pUR250 allows rapid chemical sequencing of both DNA strands and its inserts. Nucleic Acids Res. 10: 5765–5772.

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edition. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sanger F, Nicklen S & Coulsen AR (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Schneider B, Müller R, Frank R & Lingens F (1991) Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas sp. Strain CBS3. J. Bacteriol. 173: 1530–1535.

    Google Scholar 

  • Schwarze R, Brokamp A, & Schmidt FRJ (1996) Isolation and characterization of dehalogenases from 2,2,-dichloropropionate-degrading soil bacteria. Curr. Microbiol., in press.

  • Slater JH (1994) Microbial dehalogenation of haloaliphatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp 379–421). Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Slater JH, Bull AT & Hardman DJ (1995) Microbial dehalogenation. Biodegradation 6: 181–189.

    Google Scholar 

  • Simon R, Priefer U & Pühler A (1983) A broad host range mobilisation system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Biotechnol. 1: 784–791.

    Google Scholar 

  • Strotmann U & Röschenthaler R (1987) A Method for screening bacteria, aerobically degrading chlorinated short-chain hydrocarbons. Curr. Microbiol. 15: 159–163.

    Google Scholar 

  • Strotmann UJ, Pentenga M & Janssen DB (1990) Degradation of 2-chloroethanol by wild type and mutants of Pseudomonas putida US2. Arch. Microbiol. 154: 294–300.

    Google Scholar 

  • Thomas AW, Slater JH & Weightman AJ (1992) The dehalogenase gene dehI from Pseudomonas putida PP3 is carried on an unusual mobile genetic element designated DEH. J. Bacteriol. 174: 1932–1940.

    Google Scholar 

  • Topping AW, Thomas AW, Slater JH & Weightman AJ (1995) The nucleotide sequence of a transposable haloalkanoic acid dehalogenase regulatory gene (deh RI) from Pseudomonas putida strain PP3 and its relationship with σ54 activators. Biodegradation 6: 247–255.

    Google Scholar 

  • van derPloeg J, vanHall G & Janssen DB (1991) Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene. J. Bacteriol. 173: 7925–7933.

    Google Scholar 

  • vanElsas JD, Trevors JT & Starodup ME (1988) Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol. Ecol. 53: 299–306.

    Google Scholar 

  • Weightman AJ, Slater JH & Bull AT (1979) The partial purification of two dehalogenases from Pseudomonas putida PP3. FEMS Microbiol. Letters 6: 231–234.

    Google Scholar 

  • Weightman AJ & Slater JH (1980) Selection of Pseudomonas putida strains with elevated dehalogenase activities by continuous culture growth on chlorinated alkanoic acids. J. Gen. Microbiol. 121: 187–193.

    Google Scholar 

  • Weightman AJ, Weightman AI & Slater JH (1982) Stereospecificity of 2-mono-chloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: Evidence for two different dehalogenation mechanisms. J. Gen. Microbiol. 128: 1755–176.

    Google Scholar 

  • Yanisch-Perron C, Vieira J & Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brokamp, A., Happe, B. & Schmidt, F.R.J. Cloning and nucleotide sequence of a D,L-haloalkanoic acid dehalogenase encoding gene from Alcaligenes xylosoxidans ssp. denitrificans ABIV. Biodegradation 7, 383–396 (1996). https://doi.org/10.1007/BF00056422

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056422

Key words

Navigation