Skip to main content
Log in

Biological processes involved in the cycling of elements between soil or sediments and the aqueous environment

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The biochemical basis for resistance to toxicity is complicated by the great variety of reactions at the molecular and cellular levels even in closely related organisms and tissues. Several strategies for resistance to intoxication have been identified. Metal ion interactions in biology can be divided into three classes representing fast, intermediate and slow exchange with biological ligands. Examples of those elements in fast exchange include the alkali metals Na+ and K+, the alkali earth metals Ca2+ and Mg2+, and, of course, H+. Those which can sometimes be in intermediary exchange are Fe2+ and Mn2+. Examples of those in slow exchange are generally in the active sites of metalloenzymes, e.g., Fe3+, Zn2+, Ni2+, Cu2+. In the presented paper, the cycling of one essential element (nickel) and one non-essential element (mercury) are reviewed with special emphasis on their mobilities in the event of in situ sediment contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauld, J., 1985. The importance of chemical speciation in environmental processes. In Dahlem Konferenzen. F. E. Brinckman & M. Bernard (eds.), Springer-Verlag, Berlin. (in press).

    Google Scholar 

  • Brinckman, F. E. & M. Bernard, 1985. The importance of chemical speciation in environmental processes. In Dahlem Konferenzen. F. E. Brinckman & M. Bernard (eds.), Springer-Verlag, Berlin. (in press).

    Google Scholar 

  • Chakrabarty, A. M., 1985. The importance of chemical speciation in environmental processes. In Dahlem Konferenzen. F. E. Brinckman & M. Bernard (eds.), Springer-Verlag, Berlin. (in press).

    Google Scholar 

  • Crawford, R. L., 1985. Personal Communication. Gray Fresh-water Biological Institute, Navarre, MN 55392.

  • DeSimone, R. W., M. W. Penley, L. Charbonneau, S. G. Smith, J. M. Wood, H. A. D. Hill, J. M. Pratt, S. Piesdale & R. J. P. Williams, 1973. The kinetics and mechanism of methyl and ethyl-transfer to mercuric ion. Biochim. Biophys. Acta 304: 851–869.

    Google Scholar 

  • Dickson, N. E., C. Gazzola, R. L. Blakeley & B. Zerner, 1975. Jackbean urease (EC3515) metalloenzyme — a simple role for nickel. J. Am. Chem. Soc. 97: 4131–4133.

    Google Scholar 

  • Fish, R. H., R. S. Tannous, W. Walker, C. S. Weiss & F. E. Brinckman, 1983. Isolation and identification of compounds from Green River formation oil shale. J. Chem. Soc. Chem. Communs. 5: 490–493.

    Google Scholar 

  • Hansen, C. L., G. Zwolinski, D. Martin & J. W. Williams, 1985. Bacterial removal of mercury from sewage. Biotechn. and Bioeng. (in press).

  • Hou-Pan, H. S. & N. Imura, 1982. Involvement of mercury methylation in microbial detoxification. Arch. Microbiol. 131: 176–178.

    Google Scholar 

  • Lovelock, J. E., 1979. Gaia: A new look at life. Oxford University Press, London.

    Google Scholar 

  • Olson, G. J., 1985. Microbial life in the acidic environment. In Dahlem Konferenzen. F. E. Brinckman & M. Bernard (eds.), Springer-Verlag, Berlin. (in press).

    Google Scholar 

  • Salomons, W. & P. Baccini, 1985. The importance of chemical speciation in environmental processes. In Dahlem Konferenzen. F. E. Brinckman & M. Bernard (eds.), Springer-Verlag, Berlin. (in press).

    Google Scholar 

  • Segall, H. J. & J. M. Wood, 1974. Reaction of methylmercury with plasmologens suggests a mechanism for neurotoxicity of metal-alkyls. Nature (London) 248: 456–458.

    Google Scholar 

  • Silver, S., 1985. Bacterial interactions with mineral cations and anions: good ions and bad. In Biomineralization and Biological Metal Accumulation. P. Westbrook & E. W. de Jong (eds.), Reidel, Amsterdam. (in press).

    Google Scholar 

  • Sunderman, W., 1981. The carcinogenicity of nickel subsulphide. Environmental Health Perspectives 40: 131–141.

    Google Scholar 

  • Wang, Hong-Kang & J. M. Wood, 1983. Microbial resistance to heavy metals. Environ. Sci. and Techn. 17: 582A–590A.

    Google Scholar 

  • Wang, Hong-Kang & J. M. Wood, 1983. Bioaccumulations of nickel by algae. Environ. Sci. and Techn. 18: 106–109.

    Google Scholar 

  • Wood, J. M., 1976. Biochemical and biophysical perspectives in marine biology. In The biochemistry of toxic elements of aqueous systems. D. C. Malins & J. R. Sargent (eds.), Academic Press, London. pp. 426–453.

    Google Scholar 

  • Wood, J. M., A. Cheh, L. J. Dizikes, W. P. Ridely, S. Rakow & J. R. Lakowicz, 1978. Biomethylation of toxic elements. Fed. Proc. 37: 16–24.

    Google Scholar 

  • Wood, J. M., 1983. Selected biochemical reactions of environmental significance. Chem. Scripts 21: 155–162.

    Google Scholar 

  • Wood, J. M., 1984a. Evolutionary aspects of metal ion transport. In Metal ions in biology. H. Sigel (ed.), Marcel Dekker, N.Y., 18: 223–237.

    Google Scholar 

  • Wood, J. M., 1984b. Microbial strategies in resistance to metal ion toxicity. In Metal ions in biology. H. Sigel (ed.), Marcel Dekker, N.Y., 18: 333–351.

    Google Scholar 

  • Wood, J. M., 1984c. Alkylations of metals and the activity of metal-alkyls. Toxicol. and Environ. Chem. 7: 229–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J.M. Biological processes involved in the cycling of elements between soil or sediments and the aqueous environment. Hydrobiologia 149, 31–42 (1987). https://doi.org/10.1007/BF00048644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048644

Keywords

Navigation