Skip to main content
Log in

Isolation of a cytochrome P450 homologue preferentially expressed in developing inflorescences ofZea mays

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Four cDNA clones exhibiting preferential hybridization to transcripts present in developing maize tassels were isolated by differential screening. One of these cDNA clones hybridizes to transcripts detectable only in the shoot apex. The abundance of this transcript is significantly higher in developing inflorescence apices than in vegetative apices. DNA sequence analysis of a 2107 nucleotide cDNA clone corresponding to this transcript revealed that the transcript encodes a polypeptide of 547 amino acids, with a molecular mass of 58.4 kDa. This polypeptide shares significant sequence similarity with members of the cytochrome P450 monooxygenase gene superfamily, including the conserved C-terminal domains typical of the cytochrome P450 monooxygenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bairoch A: PROSITE: a dictionary of sites and patterns in proteins. Nucl Acids Res 19: 2241–2245 (1991).

    Google Scholar 

  2. Bonnett OT: Ear and tassel development in maize. Annu Mo Bot Gard 35: 269–288 (1948).

    Google Scholar 

  3. Bozak KR, Yu H, Sirevag R, Christofferson RE: Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit. Proc Natl Acad Sci USA 87: 3904–3908 (1990).

    Google Scholar 

  4. Cheng PC, Greyson RI, Walden DB: Organ initiation and the development of unisexual flowers in the tassel and ear ofZea mays. Am J Bot 70: 450–462 (1983).

    Google Scholar 

  5. Coc EH, Neuffer MG, Hoisington DA: The genetics of corn. In: Sprague GF, Dudley JW (eds) Corn and Corn Improvement, 3rd ed., pp. 81–258. American Society of Agronomy, Madison, WI (1988).

    Google Scholar 

  6. Colasanti J, Tyers M, Sundaresan V: Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue fromZea mays. Proc Natl Acad Sci USA 88: 3377–3381 (1991).

    Google Scholar 

  7. DeLong A, Calderon-Urrea A, Dellaporta SL: Sex determination geneTasselseed2 of maize encodes a short-chain alchohol dehydrogenase required for stage-specific floral organ abortion. Cell 74: 757–768 (1993).

    Google Scholar 

  8. Donaldson RP, Luster DG: Multiple forms of plant cytochromes P-450. Plant Physiol 96: 669–674 (1991).

    Google Scholar 

  9. Eisenberg D, Schwarz E, Komaromy M, Wall R: Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179: 125–142 (1984).

    Google Scholar 

  10. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    Google Scholar 

  11. Goodwin TW, Mercer EI: Introduction to Plant Biochemistry. Pergamon, New York (1983).

    Google Scholar 

  12. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG: Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618 (1990).

    Google Scholar 

  13. Gubler U, Hoffman BJ: A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269 (1983).

    Google Scholar 

  14. Hedden P., Phinney BO, Heupel R, Fujii D, Cohen H, Gaskin P, MacMillan J, Grabbe JE: Hormones of young tassels ofZea mays. Phytochemistry 21: 391–393 (1982).

    Google Scholar 

  15. Irish EE, Nelson TM: Identification of multiple stages in the conversion of maize meristems from vegetative to floral development Development 112: 891–898 (1991).

    Google Scholar 

  16. Kagawa N, Mihara K, Sato R: Structural analysis of cloned cDNAs for polycyclic hydrocarbon-inducible forms of rabbit liver microsomal cytochrome P-450. J Biochem 101: 1471–1479 (1987).

    Google Scholar 

  17. Kalb VF, Loper JC: Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarity. Proc Natl Acad Sci USA 85: 7221–7225 (1988).

    Google Scholar 

  18. Kelly AJ, Zagotta MT, White RA, Chang C, Meeks-Wagner DR: Identification of genes expressed in the tobacco shoot apex during the floral transition. Plant Cell 2: 963–972 (1990).

    Google Scholar 

  19. Kempton JH: Heritable characters of maize V. adherence. J Hered 11: 317–322 (1920).

    Google Scholar 

  20. Kiesselbach TA: The Structure and Reproduction of Corn. University of Nebraska Press, Lincoln, NE (1949).

    Google Scholar 

  21. Kohler S, Coraggio I, Becker D, Salamini F: Pattern of expression of meristem-specific cDNA clones of barley (Hordeum vulgare L.). Planta 186: 227–235 (1992).

    Google Scholar 

  22. Konig AJ, Tanimoto EY, Kiehne K, Rost T, Comai L: Cell-specific expression of plant histone H2A genes. Plant Cell 3: 657–665 (1991).

    Google Scholar 

  23. Larkin JC, Hunsperger JP, Culley D, Rubenstein I, Silflow CD: The organization and expression of a maize ribosomal gene family. Genes Devel 3: 500–509 (1989).

    Google Scholar 

  24. Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HE, Scheele GA: Selection of ATG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    Google Scholar 

  25. Mandava NB: Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol 39: 23–52 (1988).

    Google Scholar 

  26. Medford JI: Vegetative apical meristems. Plant Cell 4: 1029–1039 (1992).

    Google Scholar 

  27. Medford JI, Elmer JS, Klee HJ: Molecular cloning and characterization of genes expressed in shoot apical metistems. Plant Cell 3: 359–370 (1991).

    Google Scholar 

  28. Meijer AH, Souer E, Verpoorte R, Hoge JHC: Isolation of cytochrome P-450 cDNA clones from the higher plantCatharanthus roseus by a PCR strategy. Plant Mol Biol 22: 379–383 (1993).

    Google Scholar 

  29. Melzer S, Majewski DM, Apel K: Early changes in gene expression during the transition from vegetative to generative growth in the long-day plantSinapis alba. Plant Cell 2: 631–643 (1990).

    Google Scholar 

  30. Murphy G, Kavanaugh T: Speeding-up the sequencing double-stranded DNA. Nucl Acids Res 16: 5198 (1988).

    Google Scholar 

  31. Nebert DW, Gonzalez FJ: P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56: 945–993 (1987).

    Google Scholar 

  32. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW: The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 8: 1–51 (1993).

    Google Scholar 

  33. Nelson DR, Strobel HW: On the membrane topology of vertebrate cytochrome P450 proteins. J Biol Chem 263: 6038–6050 (1988).

    Google Scholar 

  34. O'Keefe DP, Leto KJ: Cytochrome P-450 from the mocoarp of avocado (Persea americana). Plant Physiol 89: 1141–1149 (1989).

    Google Scholar 

  35. O'Keefe DP, Romesser JA, Leto KJ: Plant and bacterial cytochromes P-450: involvement in herbicide metabolism. In: Saunders JA, Kosak-Channing L., Conn EE (eds) Phytochemical Effects of Environmental Compounds, pp. 151–173. Plenum, New York (1987).

    Google Scholar 

  36. Ono H, Iwasaki M, Sakamoto N, Mizuno S: cDNA cloning and sequence analysis of a chicken gene expressed during gonadal development and homologous to mamalian cytochrome P-450c 17. Gene 66: 77–85 (1988).

    Google Scholar 

  37. Palazzo MJ, Meyerowitz EM: A family of lambda phage cDNA cloning vectors, λSWAJ, allowing the amplification of RNA sequences. Gene: 52: 197–206 (1987).

    Google Scholar 

  38. Potts JR, Weklych R, Conn EE: The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J Biol Chem 249: 5019–5026 (1974).

    Google Scholar 

  39. Pri-Hadash A, Hareven D, Lifschitz E: A meristem-related gene from tomato encodes a dUTPase: analysis of expression in vegetative and floral meristems. Plant Cell 4: 149–159 (1992).

    Google Scholar 

  40. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81: 8014–8018 (1984).

    Google Scholar 

  41. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY (1989).

    Google Scholar 

  42. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  43. Shahar T, Hennig N, Gutfinger T, Hareven D, Lifschitz E: The tomato 66.3-kD polyphenoloxidase gene. Plant Cell 4: 135–147 (1992).

    Google Scholar 

  44. Sharman BC: Developmental anatomy of the shoot ofZea mays L. Ann.Bot. 6: 245–282 (1942).

    Google Scholar 

  45. Sheridan WF: Maize developmental genetics: genes of morphogenesis. Annu Rev Genet 22: 353–385 (1988).

    Google Scholar 

  46. Sladky Z: Role of growth regulators in differentiation process of maize (Zea mays L.) organs. Biol Plant 11: 208–215 (1969).

    Google Scholar 

  47. Sponsel VM: Gibberellin biosynthesis and metabolism. In: Davies PJ (ed) Plant Hormones and their Role in Plant Growth and Development, pp. 43–75. Martinus Nijhoff, Boston, MA (1987).

    Google Scholar 

  48. Steeves TA, Sussex IM: Patterns in Plant Development, pp. 46–47. Cambridge University Press, Cambridge (1989).

    Google Scholar 

  49. Sussex IM: The permanence of meristems: developmental organizers or reactors to exogenous stimuli? Brookhaven Symp Biol 16: 1–12 (1964).

    Google Scholar 

  50. Teutsh HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier J-M, Jeltsch J-M, Durst F, Werck-Reichhart D: Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci USA 90: 4102–4106 (1993).

    Google Scholar 

  51. Ursin VM, Irvine JM, Hiatt WR, Shewmaker CK: Developmental analysis of elongation factor 1α expression in transgenic tobacco. Plant Cell 3: 583–591 (1991).

    Google Scholar 

  52. Vetter H-P, Mangold U, Schroder G, Marner F-J, Werk-Reichhart D, Schroder J: Molecular analysis and herterologous expression of an inducible cytochrome P-450 protein from periwinkle (Catharanthus roseus L.). Plant Physiol 100: 998–1007.

  53. Walbot V, Messing J: Molecular genetics of corn. In: Sprague GF, Dudley JW (eds) Corn and corn Improvement, 3rd ed., pp. 389–429. American Society of Agronomy, Madison, WI (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, J.C. Isolation of a cytochrome P450 homologue preferentially expressed in developing inflorescences ofZea mays . Plant Mol Biol 25, 343–353 (1994). https://doi.org/10.1007/BF00043864

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043864

Key words

Navigation