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1. Introduction 

The problem involves the modelling of the evolution of a chemical reaction within a small 

cell. A simple reversible reaction takes place between two reactants X and Y to produce 

XY. In the system of interest, one species, say Y, is immobilized on a side wall of the 

cell, and the other species X is dissolved in solution. The reaction takes place only on 

the side wall. The inunobilized species Y is a specific binding agent for the dissolved 

species X. If a solution X is introduced to the cell at time t = 0, then as the reaction at 

the wall proceeds, an X concentration gradient develops, and X diffuses to the wall until 

equilibrium results. The aim of this study is to predict the concentration of the species X 

and the concentration of the complex XY at the reaction side wall as functions of time. 

The motivation for this work came from a study of a biosensor device (see, for example, 

Radley, Drake, Shanks, Smith, and Stephenson [16]), and a specific application is the use 

of this device as a pregnancy testing kit. 

In Section 2 the model development is outlined. An asymptotic solution for small time is 

presented in Section 3. This shows that the concentration of the complex (the substance 

resulting from the chemical reaction of the antibody and the antigen) is not a smooth 

function of time and so indicates limitations on the direct use of finite differences. A per­

tubation solution is then developed using a non-dimensional parameter (the molar ratio­

see Section 2). This proves to be an accurate representation for small values of this param­

eter and hence a useful check on the numerical results. Following Dixon[7], a numerical 

method is written down and a modification is suggested which is seen to overcome the 

loss of accuracy for small time. In Section 5 an alternative integral formulation is present­

ed. This allows a derivation of further asymptotic results which are seen to agree with 

earlier results. For this formulation, high accuracy is achievable by subtracting out the 

singularities. Numerical results are given in Section 6. 
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2. The mathematical model 

In this section the mathematical model of the reaction-diffusion process is developed. 

The detail of the following modelling analysis can be found in Burgess, Dixon, Jones, 

and Thoma [4]. Let X denote the antigen concentration and Y denote the antibody 

concentration. The reaction is given as 

X+Y XY, 

where k1 and k_l are the forward and backward reaction rates. 

Let [X] denote the concentration of X (in moles/m3 ), [Y] denote the concentration of Y 

(in moles/m2
) and [XY] denote the concentration of XY (in moles/m2

). We require the 

following constants: 

a 0 : initial Y concentration (molesjm2 ), 

eo : initial X concentration at the reaction side wall (moles/m3 ), 

d : edge of vessel to surface (m), 

D : diffusion coefficient of X (m 2 / s). 

If we ignore edge effects we can neglect any diffusion in the y-direction and [X] satisfies 

the diffusion equation 

Also 

8[X] =O 
8x 

at X= 0. 

Further [X]t=O = c0 since the concentration is assumed uniform initially. 

We need, however, the boundary condition 81;1 at x =don the antibody surface. 
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To facilitate the discussion let us introduce the notation: 

u(x, t) _ concentration of X ie [X], 

1(t) concentration of XY ie [XY]. 

Now the law of mass action states 

where we have assumed that one molecule of X and one molecule of Y combine to give 

one molecule of the complex XY. 

The initial concentration of Y is a0 • This will be depleted by the amount of X used up in 

the reaction. Therefore, 

d 

[Y](t) = a0 - ( c0 d- j u(x, t) dx ). 
0 

Thus 
d 

~: (d, t) = k_I 1(t)- k1 u(d, t)(ao- cod+ j u(x, t) dx ). (2.1) 

0 

In addition, the conservation of the total number of species X, either in solution or bound 

in the complex XY is given by 

d 

j u(x, t) dx + 1(t) =cod. 
0 

Equations (2.1) and (2.2) together imply 

8u 
D Bx (d, t) = k-II(t)- k1 u(d, t)(a0 - 1(t)). 

Summarising, a consistent model of the antibody-antigen reaction is 

8u 82u 
8t (x, t) = D 8x2 (x, t), 

subject to 

u(x, 0) =eo, 
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and the boundary conditions 

together with 

8u 
Bx (0, t) = 0, 

8u 
D Bx (d,t) = k-I'Y(t)- k1u(d,t)(a0 - 'Y(t)), 

d 

j u(x, t) dx + 'Y(t) = c0 d. 
0 

By introducing the non-dimensional variables 

x'=x/d, t'=(D/d2 )t, 

and scaling the dependent variables 

u'(x',t') = u(x,t)jc0 , "f 1(t') = 'Y(t)ja0 , 

it is not difficult to see that (2.3) can be rewritten as 

8u 82 u 
at - 8x 2 ' 

subject to 

u(x, 0) = 1, 

and 
8u 
Bx (0, t) = O, 

and 

together with 
1 

m"((t) + J u(x, t) dx = 1, 

0 

(2.3c) 

(2.3d) 

(2.3e) 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

where the 'primes' have been omitted for clarity. The constant m= a0 /c0 d is the molar 

ratio, L = k_J/k1 c0 is the reaction time scale ratio, and E = (k 1 c0 + k_t)d2 
/ D is the 

diffusion reaction time scale ratio. 
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3. An integro-differential equation formulation and analytic and numerical 

solutions 

In this section, a Volterra integro-differential equation is formulated for 1(t). Using this 

formulation an asymptotic solution of 1( t) for small t is obtained. Treating 1 as both a 

function of t and the molar ratio m, a regular pertubation for 1( t, m) is derived for small 

m. Finally, a product Euler scheme due to Dixon[7] is presented and a modified version, 

which is designed to cope with the low order convergence of Dixon's scheme near t = 0, is 

proposed. 

3.1 Reformulation as an integro-differential equation 

Differentiating (2.4e) with respect to time we obtain 

1 

a, J 8u m at ( t) + Bt (X, t) ax = 0, 

0 

and using (2.4a) and (2.4c) gives 

a, 8u 
-m at (t) = 8x (1, t). (3.1) 

Taking Laplace transforms of (2.4a) with respect to t, after some manipulation involving 

the convolution theorem, we obtain 

t 

J 8u 
u(1, t) = 1 + k(t- s) Bx (1, s) as, 

0 

where 

1 ( 
00 2) k(t) = v;i 1 + 2 ~ exp(- ~ ) . (3.2) 

Thus, using (3.1), we obtain (see Burgess et al.[4]) 

t 

J a, 
u(1,t)=1-m k(t-s)as (s)as. (3.3) 

0 

Using (3.1) and (3.3) in equation (2.4d) yields 

a, rt a1 
at (t) = C- E1(t)- Cm(1-1(t)) Jo k(t- s) as (s)as. (3.4) 
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where 

C=~ 
1 +L' 

(3.5) 

with initial condition r(O) = 0. 

Once 1 is known, equation (3.3) may be used to obtain u on the boundary x = 1, and 

thus (2.4a) may be solved using (2.4b), (2.4c) and the value of u(1, t) to determine u in 

the interior 0 < x < 1, t > 0 (see Burgess et al.[4]). 

3.2. An asymptotic solution 

In this subsection we consider the behaviour of 1( t) for small t. 

Noting that when t is small, 

r(t) = o(1), 

and 
( dr 

Jo ds (s)k(t- s)ds = o(1), 

we obtain from (3.4), for small t, 

dr 
dt (t) = C + o(1), (3.6) 

which yields 

r(t) = Ct + o(t). (3.7) 

Furthermore, since when t ~ 41~ 2 , 

~ n2 ~ n exp(-l) 1 
L..,;exp(--):::; L....-exp(--):::; t 1 :::; 2exp(--) = o(1), 

t t 1-exp(--) t 
n=l n=l t 

we have from (3.4), (3.6) and (3.7), 

dr (t) = C- Cm(1 + O(t)) ( ~~(C + o(1))d.s + O(t) 
dt }0 1r t- s 

2C2m 1 

= C- .Ji t2 + O(t), 

which admits 

(3.8) 

This asymptotic expansion has also been derived by Dixon[7] using a different approach. 
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3.3. A perturbation solution 

We consider an analytic expansion of -y(t) = -y(t; m) as a function of the molar ratio m. 

For small m, let 

(3.9) 

Inserting (3.9) into (3.4) and omitting the o(1) terms results in 

d (0) 
~t (t) = c- E-y(O)(t), (3.10) 

which leads to the zero order approximation of "Y 

(3.11) 

Similarly, balancing the 0( m) terms in (3.4) we have 

d (1) t d (0) 
3t (t) = -E-y(1)(t)- C(1- "Y(o)(t)) Jo k(t- s) 3s (s)ds, (3.12) 

which reduces to 

d-y(l) { 1 } lt -d-(t) = -E "Y(I) (t)- C 2 1--- (1- exp( -Et)) exp( -Es )k(t- s) ds. (3.13) 
t 1+L 0 

Multiplying exp(Et) on both sides of (3.13) gives 

d
d ("Y(l)(t) exp(Et)) =-

02
L(1 + exp(Et)) ( exp( -Es) k(t- s) ds. 

t 1 + Jo 
(3.14) 

Since -y(O) = 0 and (3.11) shows -yC 0)(0) = 0, we must have 

Thus we can integrate both sides of (3.14) to obtain 

2 t t' 
"Y(I)(t) = _ __!!______ exp(-Et) f f (exp(Et')L+1) exp(-Es)k(t'-s)dsdt'. (3.15) 

1 + L Jo Jo 
Changing the order of integration in (3.15) followed by the transformation 

t' = u + s 

7 



and again changing the order of integration results in 

C2 it 1t-u l(l)(t) =- --exp(-Et) k(u) (exp(-Es)+Lexp(Eu))dsdu 
1 + L o o 

c it =- ( )
2 

exp( -Et) k(u) (1- exp( -E(t- u)) + LE(t- u) exp(Eu)) du. 
1+L o 

(3.16) 

The right hand side of (3.16) can be evaluated by numerical quadrature using the trape­

zoidal rule or Simpson's rule, with the truncated expression for k( u) discussed in Section 

3.4 and Dixon[7]. 

" E 
e 

" Cl 

1.2 

0.8 

0.1 

0.1 0.2 

highly accurate numerical solu. 
zero order approx. 
Pirst order approx. 

0.3 0.1 
t 

0.5 

E=10.0, L=O.t, m~O.t 

Figure 1 

0.6 0.7 0.8 

Figures 1 and 2 compare the numerical results obtained using the expansion (3.9) (here zero 

order and first order approximations refer to l(o)(t) and l(o)(t) + m1(l)(t), respectively) 

and the highly accurate solutions obtained by using the convergent product integration 

scheme of Dixon[7] (see also Subsection 3.4) with a very small time step. 
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1 .2 

0.8 
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0.0 0.1 0.2 0.3 0.-t 
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0.5 

E•10.0, L•0.1, m•0.5 

Figure 2 

o.s 0.7 0.8 

For rn < 1, it appears from the graphical results that (3.9) provides a qualitatively correct 

approximation to 1(t). Further evidence that the pertubation solution is qualitatively and 

quantitively correct is given by asymptotic results. We know (Jumarhon and McKee[ll]) 

that 

lim 1(t) = 2._(1- </>*), 
t-+oo rn 

where 

</> * = ~ ( 1 - rn - L + .j ( 1 - rn - L) 2 + 4L) . 

However, it is not difficult to show that 

,i..* = 1 - ~ + o(m) 
'~-' 1+L ' 

gtvmg 

lim 1(t) = __2_L + o(1). 
t-+oo 1 + 
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But 

and thus 

lim 'Y(o)(t) = -
1
-. 

t--+oo 1 + L 

This shows that at least the 0(1) approximation of the pertubation solution tends, in the 

limit as t ---+ oo, to the correct asymptotic value. 

Furthermore, 'Y(o)(t) is obviously monotonic increasing and this agrees with the fact that 

1(t) is monotonic increasing (see [11]). 

3.4. A product integration method and its modification 

Before attempting to derive a numerical method two observations may be made: firstly, 

by differentiating (3.8) it can be seen that 1(t) does not have a bounded second derivative 

at t = 0; secondly, for a method to b e of practical use the infinite kernel given by (3.2) 

must be truncated. The first observation implies that the direct use of product integration 

schemes cannot produce high order accuracy; the second suggests the following truncation: 

Following Dixon[7], 

(3.17) 

where <P(z) is a normal function; tables of <P(z) may be found, for example , in Abramowitz 

and Stegun[1]. For given T and E > 0, lis chosen so that 

ik(t)- k1(t)i < E for all t E [0, T]. 

It follows that l is chosen such that 

The numerical method which will now be proposed for equation (3.3) will be of product 

integration type. For details, see Dixon[7] where a convergence analysis of the method is 

presented. 
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Let ti = ih, i = 0(1)N, Nh = T; li and Ui will denote approximations to 1(ti) and u(1, ti) 

respectively. Using the approximation i(!i- li-1) for l'(ti), the product Euler method 

for the integral, and replacing 1 - 1( ti) with 1 - li-l, an explicit product integration 

scheme for (3.4) can be obtained (see Dixon[7]), 

lo = 0 

(3.18) 

where the quadrature weights a(i- j) are given by 

a(i- j) = -,1 {1 + 2 t exp ( ~::_2 .) } jti+I ---=d=s 
t tl tJ t· ~' 

n=1 J 

j = 0(1)i- 1, i = 1(1)N. 

Discretising (3.3) in a similar way gives 

m T+1 - 1· i-1 ( ) 
Ui = 1- ,.fth ~a(i -j) J h J ,i = 1(1)N. 

The numerical scheme (3.18) yields a global convergence of order ~ due to the d term in 

the expansion of 1(t) for small t (equation (3.8)). 

Methods of coping with nonsmoothness of solutions of Volterra integral equations have 

been studied by many authors, for example, Brunner[2,3], who suggested nonpolynomial 

spline collocation, and by Norbury and Stuart[15] who studied the idea of applying an 

algebraic transformation to the variables of the integrands. Here we use the technique 

of subtracting out singularities, which was introduced by Eggermont[8] in a numerical 

example. 

To obtain a scheme of order one convergence, consider the following identity, 

and note from (3.8) that 1(t) + 4[:/,?t~ is twice continuously differentiable. Let 

1 4C2m l! 4C2 m l! 
JLn+l = -;;,(In+ I + 3,Jrr tt~+l -In - 3ft tr~ ), n = 0(1)N -1. 
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Thus by replacing the left hand side of (3.18) with JLi-
2~ttf, and replacing the expression 

a(i- j) 'Ya~-'Yi in the right hand side of (3.18) with 

( . ') (. ') 2C
2
m (3(. ') v z,J = a z- J JLi+I - ...(i z,J 

where 

1 { I ( -n2 ) } ltj +I (J(i,j)=- 1+22:exp ._. 
h t~ t:J t. n=l J 

1 
s2 

...;ti=Sds, j = 0(1)i- 1, i = 1(1)N, 

we obtain a numerical scheme with order one convergence, 

'Yo = 0, 
2 i-1 

2C m ~ _ C E Cm ( )/ "' (. ') JLi- ...(i ti - - 'Yi - ...(i 1- 'Yi-1 1- L v z,J , 
7r 7r . 

:J=O 

i = 1(1)N. 
(3.19) 

Obviously (3.19) allows an explicit solution of 'Yi (i = 1(1)N). Similarly we have an order 

one approximation for u(1, ti) 

i-1 

ui = 1- ...(im h L v(i,j), i = 1(1)N. 
7r . 

:J=O 

4. An alternative integral formulation and high order numerical solutions 

In this section, an equivalent system of Volterra integral equations is obtained for the 

initial-boundary value problem (2.4). Using this integral formulation, high order product 

integration schemes are derived. 

4.1. A Volterra integral formulation 

In this subsection we develop an alternative integral formulation which allows us to con­

struct arbitary high order schemes by subtracting out the singularities. 

Modifying the results of Cannon[6], Jumarhon and McKee[ll] have shown that for piece­

wise continuous g, H 1 and continuous H 2 , the solution of the following problem 

av 82 V 
8t = 8x 2 ' 

12 
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V(x,O) = g(x), 

av 
Bx (0, t) = H1 (t), 

av [1 

Bx (1, t) = H2(t, V(1, t), Jo V(x, t) dx ), 

can be written as 

0 <X< 1, 

t > 0, 

t > o, 

V(x, t) =w(x, t)- 2 fo' B(x, t- s) H1(s) ds 

+ 2 la L B( x - 1, t - s) H 2 ( s, 771 ( s), 112 ( s)) ds 

(4.1b) 

(4.1c) 

( 4.1d) 

(4.2) 

where 171(t) = V(1,t) and 172(t) = J0

1 V(x,t)dx are piecewise-continuous solutions of the 

following system of Volterra integral equations, 

with 

and 

r]J(t) =w(1,t)- 2 lot B(1, t- s) H1(s) ds 

+2 fo'e(O,t-s) H2(s,r]I(s),172(s))ds, 

172 ( t) = la 1 

w ( x, t) dx -1 t H 1 ( s) ds 

+ la t H 2 ( s , rlJ ( s), 172 ( s)) ds , 

w(x, t) = 11 

{B(x- z, t) + B(x + z, t)} g(z) dz, 

1 +oo ( ( + 2 )2) 
B( x, t) = ~ """ exp - x n . 

y47l"t ~ 4t 
n==-oo 

Now, by re-writing the boundary conditions (2.4d) and (2.4e) as 

~: (1, t) = F ( u(1, t), 11 

u(x, t) dx) 

= C [ L- (m- 1)u(1, t)- L 11 

u(x, t) dx- u(1, t) 11 

u(x, t) dx ]· 
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and using a result from Jumarhon and McKee[ll], 

11 

{B(x + z,t) + B(x- z,t)}dz = 1, 

the solution of the initial-boundary value problem (2.4) can be written as 

u ( x, t) = 1 + 2 1 t B( x - 1, t - ,'J) F( ~1 ( s), ~2 ( s)) ds, 

where ~1 (t) = u(1,t) and ~2(t) = J0

1 
u(x,t)dx are piecewise-continuous solutions of 

~1 (t) = 1 + 1' k(t- s) F( ~1 (.'J ), ~2 (s )) d.<J, 

~2(t) = 1 +it F(~1(s),~2(s))d.'J, 

(4.7) 

( 4.8a) 

( 4.8b) 

where k(t) is as defined in (3.2). The system ( 4.8) is a coupled system of Volterra integral 

equations of the second kind, with ( 4.8a) having an unbounded but integrable kernel. The 

proof of the existence and uniqueness of the solution of the system of Volterra integral 

equations ( 4.8) on [0, oo) is given in [11] thus establishing the existence and uniqueness of 

the solution of the initial-boundary value problem (2.4) on [0, oo ). 

4.2. High accuracy numerical methods 

Miller and Feldstein[14] and more recently Lubich[13] studied the structure of solutions of 

systems of A bel-Volterra integral equations of the second kind. The weakly singular kernel 

of (4.8a) suggests that we might apply the same argument as Lubich[13] to show that (4.8) 

has the asymptotic solution 

( 4.9a) 

( 4.9b) 

near t = 0. Replacing ~1(t),~2(t) in (4.8) by (4.9) gives the expressions 

2Cm I 4C2m I 
~1 (t) = 1- ;:;; t 1 2 + C 2m 2t + ft (1 + L- Cm2) t 3 2 + O(t2), ( 4.10a) 

y1r 3 1r 

4C2m 2 

~2(t) = 1- Cmt + V'ff t 312 + O(t2). ( 4.10b) 
3 1r 
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The expansion (4.10b) confirms the asymptotic solution (3.8), since </J2 (t) = 1- nvy(t) by 

definition. The following asymptotic result 

lim <Pt(t) = lim </J 2 (t) = ~{1- m- L + V(1- m- L )2 + 4£} 
t-+oo t-+oo 2 

is derived in [11]. 

Intuitively one might apply the trapezoidal product integration method to numerically 

solve (4.8). But (4.10) shows that F(<jJ1 (t),</J2 (t)) has a weak singularity t 112 at t = 0, 

which will give rise to a loss of accuracy. Here, we again use the technique of subtracting 

out singularities to obtain high order schemes. 

00 2 

Fort> 0, define "'(t) = )n:(1 + 2 L exp(- ~ )). This is clearly a bounded function. 
n=l 

Now consider the following system for q = 1, 2, 

,fo!(t) = fi'>(t) + [' G\'>(t,s~,,P,(s)) ds, 
Jo t- s 

<P2(t) = JJq)(t) + lt G~q)(t,s,<Pt(s),<P2(s))ds, 

with 

where 

g(
1)(s) =- .J.rrc2m2 s~, 

g(2)(s) = _ _2_C2m2s~- -
4
-C3 m2 (Cm2

- 2L -7 /2)s!. 
.fi 3-fi 

15 

(4.11a) 

( 4.11b) 

( 4.12a) 

( 4.12b) 

(4.12c) 

( 4.12d) 

(4.13a) 

(4.13b) 



Simple calculations show that both (4.11) and (4.12) with (4.13a), and (4.11) and (4.12) 

with (4.13b) are equivalent to the system (4.8); furthermore, Giq)(t,s,<,bl(s),</>z(s)) and 

G~q)(t,s,<,b 1 (s),</>2 (s))(q = 1,2) are q times continuously differentiable with respect to s. 

Let </>L </>; denote the approximate solutions of <f>I(ti), </>z(ti) ((i = 0(1)N). Then we have 

the following system of product integration schemes 
i 

,~,.i - I(q) +"""' (q)G~(q)(t t ,~,.i ,~,.i) 
'f'l - i L...t aii 1 i' j, 'f'1' 'f'2 ' (4.14a) 

j=O 

i 

4>~ = f~q) ( ti) + L f3~J) G~q) ( ti' t j, <PL 4>~ ), (4.14b) 
j=O 

4>~ = 1' <,bg = 1' ( 4.14c) 

i = 1(1)N, 

where 

and 
1 I 2 

t>:t(t) = y'1r(1 + 2 L exp(- ~ )) 
n=1 

(l is again chosen according to the accuracy required), and I~q) is an approximation of 

J}q)(ti) obtained by using product integration schemes consistent with that used in the 

system (4.14). The calculation of I~q) involves polynomial interpolation of kt(ti- .~:~),and 

analytical quadrature of the expression sP+~ (t- s )-~ (p = O, 1, 2) over [t j, t i+1]. In (4.14), 

when 

"'~~) = lti+l ds 
.... ,3 ..;t:;=S' j = 0(1)i- 1, i = 1(1)N, 

tj 8 

a~J> = f3fl) = 0, i = 1(1 )N, 

(1) 
f3ij = h, j = 0(1)i- 1, 'i = 1(1)N, 

we obtain the explicit product Euler scheme, while when 

a~? = ltj ~' j = 0(1)i- 1, i = 1(1)N, 
tj-1 ti - s 

(1) /3(1) . ( ) 
aiO = io = 0, z = 1 1 N, 

/3~) = h, j = 0(1)i- 1, i = 1(1)N, 
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we obtain the implicit product Euler scheme, and when 

oP) = ~it; s- ti-t i = 1(1)N, 
H h ti-1 ..;r:=-s' 

(3~;) = (3~i2 ) = h/2, i = 1(1)N, 

(2) (3 .. = h 
t} ' 

j = 0(1)i- 1, i = 1(1)N, 

( 4.17a) 

( 4.17c) 

( 4.17d) 

(4.17e) 

we obtain the product trapezoidal scheme. For implicit sehemes, a system of two nonlinear 

equations is required to be solved iteratively using Newton's method at every time step. By 

subtracting off more terms in the asymptotic expansions it is straightforward to construct 

product integration schemes with third order and fourth order convergence rates. 

Once approximations to </>1 (t) and </> 2 (t) have been completed on the interval [O,T], ap­

proximations to u( x, t) may he found from ( 4. 7) by replacing 8( x, t) with the truncated 

senes 

1 
1 

( (x + 2n)Z) e,(x,t) = ~ ~ exp - . 
y 47rt L..,; 4t 

n=-1 

An estimate similar to (3.17) exists for 8(x, t)- Bt(x, t) (see Jumarhon et al.[9]). 

Convergence proofs for the numerical schemes ( 4.14) are not entirely straightforward since 

F is nonlinear and does not satisfy a global Lipschitz condition, so the standard teeh­

niques for proving the convergence of product integration methods for A bel-Volterra type 

equations (see, e.g., Cameron and McKee [5]) could not be employed directly. Detailed 

convergence proofs for the numerical schemes presented in this section can he found in 

Jumarhon and McKee[10]. 

5. Numerical examples 

In this section we present some numerical results. The results are for the case E = 0.2, 

L = 0.01, m= 1.0. The number of terms l in the truncated kernel was taken to he 8, which 
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assures an accuracy of at least 10-11 for k(t) on (0, 1]. All the results were computed using 

double precision FORTRAN. In Tables 1 and 2, approximate values of !(0.05) and !(0.5) 

are presented using both Dixon's scheme and the modified Dixon's scheme. In Tables 3, 

4, and 5 approximate values of 1'(0.05), u(l, 0.05) and !(0.5), u(1, 0.5) are given using the 

explicit and implicit product Euler schemes and the product trapezoidal scheme. Stepsizes 

h = J0 , 8
1
0 , and 1!0 are used and the differences between the approximate solutions for 

consecutive values of h are also presented. These differences (denoted by ~ in the tables) 

indicate convergence of order 1 for the Dixon scheme, the modified Dixon seheme, and 

the explicit and implicit Euler product integration schemes, and convergence of order two 

for the trapezoidal product integration method (Aitken's method (see Linz[12]) is used 

to check the approximate convergence rates). Other numerical experiments show that 

the Dixon scheme converges slower then the modified Dixon scheme near the origin. The 

essential difference between the Dixon scheme and the modified Dixon scheme is that, 

whereas the former exhibits order one convergence on [8,T](where 8 E (O,T)), the latter 

is convergent of order one on [0, T]. 
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Table 1. Dixon scheme 

h,~ 1'(0.05) 1'(0.5) 
h =to 0.009428 0.08524 
~ 5.0D-5 2.4D-4 

h =...!... 80 0.009478 0.08548 
~ 2.7D-5 1.2D-4 

h =-din 0.009505 0.08560 

Table 2. The modified Dixon scheme 

h,~ 1'(0.05) 1'(0.5) 

h =in 0.0095174 0.085548 
~ 9.1D-6 8.7D-5 

h =to 0.0095265 0.085634 
~ 4.6D-6 4.3D-5 

h = Tio 0.0095310 0.085677 

Table 3. The explicit Euler scheme 

h,~ u(1, 0.05) 1'(0.05) u(1, 0.5) 1'(0.5) 
h =to 0.952130 0.0095527 0.86062 0.085823 
~ 5.5D-5 -8.7D-6 3.9D-4 -5.2D-5 

h =in 0.952185 0.0095440 0.86101 0.085771 
~ 2.6D-5 -4.2D-6 1.9D-4 -2.6D-5 

h=ffi 0.952211 0.0095398 0.86120 0.085745 

Table 4. The implicit Euler scheme 

h,~ u(1, 0.05) 1'(0.05) u(1, 0.5) 1'(0.5) 

h = 1o 0.952294 0.0095192 0.86208 0.085616 
~ -2.7D-5 8.2D-6 -3.4D-4 5.2D-5 

h =in 0.952267 0.0095274 0.86174 0.085668 
~ -1.5D-5 4.1D-6 -1.8D-4 2.6D-5 

h = Tio 0.952252 0.0095315 0.86156 0.085694 
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Table 5. The trapezoidal product integration scheme 

h, fl. u(1, 0.05) "Y( 0.05) u(1, 0.5) "Y(0.5) 

h =to 0.952234084 0.0095356151 0.8613728 0.08571871 
fl. -4.7D-8 1.1D-8 7.8D-6 7.5D-7 

h = fri 0.952234037 0.0095356259 0.8613806 0.08571946 
fl. -1.2D-8 2.8D-9 1.9D-6 1.9D-7 

h = iflo 0.952234025 0.0095356287 0.8613825 0.08571965 

Other numerical experiments show that the technique of subtracting out the singularities 

is not so effective for large C (for example, C > 10). The reason for this is that (4.12) 

and (4.13) involve high order powers of C. So, for large C, we recommend the direct 

application of product integration schemes to the system of integral equations ( 4.8), i.e, 

for q = 1,2, let 

and 

in ( 4.14). 

6. Concluding remarks 

fiq)(t) = 1, 

f~q)(t) = 1, 

In this paper, the modelling of a reaction-diffusion process in a small cell was carried 

out. Mathematically, the problem consisted of a heat equation and nonlinear boundary 

conditions. Through a Volterra integro-differential equation reformulation, a pertubation 

solution was developed, and an asymptotic result for small time was derived. This asymp­

totic result indicated the limitations on the direct use of product integration methods. The 

product Euler scheme developed by Dixon[7] was introduced, and a modification was pre­

sented which was seen to overcome the loss of accuracy for small t. Finally, an alternative 

integral equation formulation was given which permited higher order numerical solutions. 
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From a practical viewpoint the model of this paper has proved to be a valuable aid to the 

rapid development of several medical products involving antibody-antigen technology. 

Acknowledgement The second author is grateful for the studentship provided by Strath­

clyde University. 

References 

1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover (1972). 

2. H. Brunner, Nonpolynom.ial spline collocation for Volterra equations with weakly sin­

gular kernels. SIAM J. Numer. Anal. 20 (1983) 1106-1119. 

3. H. Brunner and P.J. van der Houwen, The Numerical Solution of Volterra Equations, 

North-Holland (1986). 

4. N. Burgess, J.Dixon, S.Jones, and M.L.Thoma, A reaction-diffusion study of a small 

cell. UCINA Report No. 86/2, Oxford University (1986). 

5. R.F. Cameron and S. McKee, Product integration methods for second-kind Abel integral 

equations. J. Comput. Appl. Math. 11 (1984) 1-10. 

6. J.R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley Pub. Co. (1984). 

7. J.A. Dixon, A nonlinear weakly singular Volterra integral-differential equation arising 

from a reaction-diffusion study of a small cell. J. Comput. Appl. Math. 18 (1987) 289-305. 

8. P.P.B. Eggermont, On monotone Abel-Volterra integral equations on the half line. 

Numer. Math. 52 (1988) 65-79. 

9. B. Jumarhon, W. Lamb, S. McKee and T. Tang, A Volterra integral type method for 

solving a class of nonlinear initial-boundary value problems (submitted for publication), 

1992. 

10. B. Jumarhon and S. McKee, Numerical solution of a heat equation with a nonlinear 

21 



boundary condition (submitted for publication), 1993 

11. B. Jumarhon and S. McKee, On a heat equation with nonlinear and nonlocal boundary 

conditions (submitted for publication), 1993. 

12. P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM Philadelphia 

(1985). 

13. Ch. Lubich, Runge-Kutta theory for Volterra integral equations of the second kind. 

Math. Comp. 41 (1983) 87-102. 

14. R.K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations 

with weakly singular kernels. SIAM J. Math. Anal. 2 (1971) 242-258. 

15. J. Norbury and A.M. Stuart, Singular nonlinear Volterra integral equations. Proc. 

Roy. Soc. Edin. 106A (1987) 361-373. 

16. R.A. Radley, R.A.L. Drake, LA. Shanks, A.R. Smith, and P.R. Stephenson, Optical 

biosensors for immunoassays, the fluorescence capillary-fill device. Phil. Tran,q, Roy. Soc. 

Lond. B316 {1987) 143-160. 

22 





, 


