Skip to main content
Log in

Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Both insect and mammalian genes have previously been cloned by genetic complementation in yeast. In the present report, we show that the method can be applied also to plants. Thus, we have cloned a rape cDNA for 3-isopropylmalate dehydrogenase (IMDH) by complementation of a yeast leu2 mutation. The cDNA encodes a 52 kDA protein which has a putative chloroplast transit peptide. The in vitro made protein is imported into chloroplasts, concomitantly with a proteolytic cleavage. We conclude that the rape cDNA encodes a chloroplast IMDH. However, Southern analysis revealed that the corresponding gene is nuclear. In a comparison of IMDH sequences from various species, we found that the rape IMDH is more similar to bacterial than to eukaryotic proteins. This suggests that the rape gene could be of chloroplast origin, but has moved to the nucleus during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreadis A, Hsu Y-P, Hermodson M, Kohlhaw G, Schimmel P: Yeast LEU2: repression of mRNA levels by leucine and primary structure of the gene product. J Biol Chem 259: 8059–8062 (1984).

    Google Scholar 

  2. Auffray C, Rougeon F: Purification of mouse immuno-globulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem 107: 303–314 (1980).

    Google Scholar 

  3. Baldauf S, Palmer JD: Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265 (1990).

    Google Scholar 

  4. Barnatt JA, Payne RW, Yarrow D: Yeasts: Classification and identification. Cambridge University Press, Cambridge, UK (1983).

    Google Scholar 

  5. Bartlett SG, Grossman AR, Chua N-H: In vitro synthesis and uptake of cytoplasmically-synthesized chloroplast proteins. In: Edelman M, Hallick RB, Chua N-H (eds) Methods in Chloroplast Molecular Biology, pp. 1081–1091. Elsevier Biomedical Press. Amsterdam (1982).

    Google Scholar 

  6. Boeke JD, LaCroute F, Fink GR: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197: 345–346 (1984).

    Google Scholar 

  7. Brent R, Ptashne M: A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43: 729–736 (1985).

    Google Scholar 

  8. Cedergren R, Gray MW, Abel Y, Sankoff D: The evolutionary relationships among known life forms. J Mol Evol 28: 98–112 (1988).

    Google Scholar 

  9. Cline K, Werner-Washburne M, Lubben TH, Keegstra K: Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplast. J Biol Chem 260: 3691–3696 (1985).

    Google Scholar 

  10. Davidow LS, Kaczmarek FS, DeZeeuw JR, Conlon SW, Lauth MR, Pereira DA, Franke AE: The Yarrowia lipolytica LEU2 gene. Curr Genet 11: 377–383 (1987).

    Google Scholar 

  11. Elledge SJ, Mulligan JT, Ramer SW, Spottswood M, Davis RW: λYES: A multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci USA 88: 1731–1735 (1991).

    Google Scholar 

  12. Ericson ML, Rödin J, Lenman M, Glimelius K, Josefsson LG, Rask L: Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem 261: 14576–14581 (1986).

    Google Scholar 

  13. Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 (1985).

    Google Scholar 

  14. Fitch WM, Margoliash E: Construction of phylogenetic trees. Science 155: 279–284 (1967).

    Google Scholar 

  15. Gavel Y, von Hejne G: A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett 261: 455–458 (1990).

    Google Scholar 

  16. Gottlieb LD: Conservation and duplication of isozymes in plants. Science 216: 373–380 (1982).

    Google Scholar 

  17. Hamasawa K, Kobayashi Y, Harada S, Yoda K, Yamasaki M, Tamura G: Molecular cloning and nucleotide sequence of the 3-isopropylmalate dehydrogenase gene of Candida utilis. J Gen Microbiol 133: 1089–1097 (1987).

    Google Scholar 

  18. Heinkoff S, Tatchell K, Hall BD, Nasmyth KA: Isolation of a gene from Drosophila by complementation in yeast. Nature 289: 33–37 (1981).

    Google Scholar 

  19. Huynh TV, Young RA, Dawis RW: Constructing and screening cDNA libraries in λgt10 and λgt11. In: Glover DM (eds) DNA Cloning vol. 1. IRL Press, Oxford (1985).

    Google Scholar 

  20. Imai R, Sekiguchi T, Nosoh Y, Tsuda K: The nucleotide sequence of 3-isopropylmalate dehydrogenase from Bacillus subtilis. Nucl Acids Res 15: 4988 (1987).

    Google Scholar 

  21. Johnston SA, Salmeron JMJr, Dincher SS: Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50: 143–146 (1987).

    Google Scholar 

  22. Josefsson LG, Lenman M, Ericson ML, Rask L: Structure of a gene encoding the 1.7 S storage protein, napin, from Brassica napus. J Biol Chem 262: 12196–12201 (1987).

    Google Scholar 

  23. Kagawa Y, Nojima H, Nukiwa N, Ishizuka M, Nakajima T, Yasuhara T, Tanak T, Oshima T: High guanine plus cytosine content in the third letter codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem 259: 2856–2960 (1984).

    Google Scholar 

  24. Kikuchi Y, Kitazawa Y, Shimatake H, Yamamoto M: The primary structure of the leul + gene of Schizosaccharomyces pombe. Curr Genet 14: 375–379 (1988).

    Google Scholar 

  25. Kimura M. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK (1983).

    Google Scholar 

  26. Krebbers E, Seurinck J, Herides L, Cashmore AR, Timko MP: Four genes in two diverged subfamilies encode the ribulose-1,5-bisphosphate carboxylase small subunit polypeptides of Arabidopsis thaliana. Plant Mol Biol 11: 745–759 (1988).

    Google Scholar 

  27. Kreger-van Rij NJW: General classification of the yeasts. In: Kreger-van Rij NJW (ed) The Yeasts. Elsevier, Amsterdam (1984).

    Google Scholar 

  28. Kvist S, Wiman K, Claesson L, Peterson PA, Dobberstein B: Membrane insertion and oligomeric assembly of HLA-DR histocompatibility antigens. Cell 29: 61–69 (1982).

    Google Scholar 

  29. Kurtz DT, Nicodemus CF: Cloning of a globulin cDNA using a high efficiency technique for the cloning of trace messenger RNAs. Gene 13: 145–152 (1981).

    Google Scholar 

  30. Lee M, Nurse P: Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2 +. Nature 327: 31–35 (1987).

    Google Scholar 

  31. Leutwiler LS, Meyerowitz EM, Tobin EM: Structure and expression of three light-harvesting chlorophyl a/b-binding protein genes in Arabidopsis thaliana. Nucl Acids Res 14: 4051–4064 (1986).

    Google Scholar 

  32. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  33. Mariani P, Johansson M, Ellergren H, Harbitz I, Juneja RK, Andersson L: Multiple RFLPs in the porcine calcium release channel gene (CRC): assignment to the halothane (HAL) linkage group. Animal Genetics, in press.

  34. McKnight GL, McConaughy BL: Selection of functional cDNAs by complementation in yeast. Proc Natl Acad Sci USA 80: 4412–4416 (1983).

    Google Scholar 

  35. Miflin BJ: The location of nitrate reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Plant Physiol 54: 550–555 (1974).

    Google Scholar 

  36. Nehlin JO, Carlberg M, Ronne H: Yeast galactose permease is related to yeast and mammalian glucose transporters. Gene 85: 313–319 (1989).

    Google Scholar 

  37. Nehlin JO, Ronne H: Yeast MIG1 repressor is related to the mammalian early growth response and Wilms tumour finger proteins. EMBO J 9: 2891–2898 (1990).

    Google Scholar 

  38. Qu L-H, Nicoloso M, Bachellerie J-P: Phylogenetic calibration of the 5′ terminal domain of large rRNA achieved by determining twenty eukaryotic sequences. J Mol Evol 28: 113–124 (1988).

    Google Scholar 

  39. Ryan ED, Tracy JW, Kohlhaw GB: Subcellular localization of leucine bio-synthetic enzymes in yeast. J Bact 116: 222–225 (1976).

    Google Scholar 

  40. Saitou N, Nei M: The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 (1987).

    Google Scholar 

  41. Schaber MD, DeChiera TM, Kramer RA: Yeast vectors for production of interferon. Meth Enzymol 119: 416–423 (1986).

    Google Scholar 

  42. Schild T, Brake AJ, Kiefer MC, Young D, Barr PJ: Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations. Proc Natl Acad Sci USA 87: 2916–2920 (1990).

    Google Scholar 

  43. Schmidt GW, Mishkind ML: The transport of proteins into chloroplasts. Annu Rev Biochem 55: 879–912 (1986).

    Google Scholar 

  44. Sekiguchi T, Ortega-Cesana J, Nosoh Y, Ohashi S, Tsuda K, Shigenori K: DNA and amino-acid sequence of 3-isopropylmalate dehydrogenase of Bacillus coagulans. Comparison with the enzymes of Saccharomyces cerevisiae and Thermus thermophilus. Biochim Biophys Acta 867: 36–44 (1986).

    Google Scholar 

  45. Sekiguchi T, Suda M, Ishii T, Nosoh Y, Tsuda K: The nucleotide sequence of 3-isopropylmalate dehydrogenase from Bacillus caldotenax. Nucl Acids Res 15: 853 (1987).

    Google Scholar 

  46. Shih M-C, Lazar G, Goodman HM: Evidence in favour of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glycer-aldehyde-3-phosphate dehydrogenases. Cell 47: 73–80 (1986).

    Google Scholar 

  47. Smeekens S, Bauerie C, Hagman J, Keegestra K, Weisbeek P: The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46: 365–375 (1986).

    Google Scholar 

  48. Strizhov NI, Krukov VM, Buryanov JI, Bayev AA: Gen β-izopropilmalat-degidrogenazi Agrobacterium tumefaciens C58: klonirovaniye i pervitjanaya struktura. Dokl Akad Nauk SSSR 288: 481–487 (1986).

    Google Scholar 

  49. Struhl K, Cameron JR, Davis RW: Functional genetic expression of eukaryotic DNA in E. coli. Proc Natl Acad Sci USA 73: 1471–1475 (1976).

    Google Scholar 

  50. Takagi M, Kobayashi N, Sugimoto M, Fujii T, Watari J, Yano K: Nucleotide sequencing analysis of a LEU gene of Candida maltosa which complements leuB mutation of Escherichia coli and leu2 mutation of Saccharomyces cerevisiae. Curr Genet 11: 451–457 (1987).

    Google Scholar 

  51. Thomas BJ, Rothstein R: Elevatedrrecombination rates in transcriptionally active DNA. Cell 56: 619–630 (1989).

    Google Scholar 

  52. Vieira J, Messing J: Production of single-stranded plasmid DNA. Meth Enzymol 153: 3–11 (1987).

    Google Scholar 

  53. Woese CR, Bacterial evolution. Microbiol Rev 51: 221–271 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellerström, M., Josefsson, L.G., Rask, L. et al. Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol Biol 18, 557–566 (1992). https://doi.org/10.1007/BF00040671

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040671

Key words

Navigation