Skip to main content
Log in

Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer

  • Methods
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A newly developed modulation fluorometer is described which operates with 1 μsec light pulses from a light-emitting diode (LED) at 100 KHz. Special amplification circuits assure a highly selective recording of pulse fluorescence signals against a vast background of non-modulated light. The system tolerates ratios of up to 1:107 between measuring light and actinic light. Thus it is possible to measure the “dark fluorescence yield” and record the kinetics of light-induced changes. A high time resolution allows the recording of the rapid relaxation kinetic following a saturating single turnover flash. Examples of system performance are given. It is shown that following a flash the reoxidation kinetics of photosystem II acceptors are slowed down not only by the inhibitor DCMU, but by a number of other treatments as well. From a light intensity dependency of the induction kinetics the existence of two saturated intermediate levels (I1 and I2) is apparent, which indicates the removal of three distinct types of fluorescence quenching in the overall fluorescence rise from F0 to Fmax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

QA and QB :

consecutive electron acceptors of photosystem II

PS II:

photosystem II

P 680:

reaction center chlorophyll of photosystem II

F0 :

minimum fluorescence yield following dark adaptation

Fmax :

maximum fluorescence yield

DCMU:

3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea

DCCD:

N,N′-dicyclohexylcarbodiimide

PQ:

plastoquinone

DAD:

diaminodurene

References

  1. Amesz J and Duysens LNM (1977) In primary processes of photosynthesis (Barber J, ed.) pp. 149–185 Amsterdam: Elsevier

    Google Scholar 

  2. Azzi A, Casey RP and Nalecz MJ (1984) Biochim Biophys Acta 768:149–185

    Google Scholar 

  3. Bouges-Bocquet B (1973) Biochim Biophys Acta 314:250–256

    Google Scholar 

  4. Bowes JM and Crofts AR (1980) Biochim Biophys Acta 590:373–384

    Google Scholar 

  5. Bradbury M and Baker NR (1981) Biochim Biophys Acta 63:542–551

    Google Scholar 

  6. Bradbury M and Baker NR (1984) Biochim Biophys Acta 765:275–281

    Google Scholar 

  7. Butler WL (1972) Proc Nat Acad Sci US 69:3420–3422

    Google Scholar 

  8. Crofts AR and Wraight CA (1983) Biochim Biophys Acta 726:149–185

    Google Scholar 

  9. Delosme R (1967) Biochim Biophys Acta 143:108–128

    Google Scholar 

  10. Den Haan GA, Gorter de Vries H and Duysens LNM (1976) Biochim Biophys Acta 430:265–281

    Google Scholar 

  11. Dietz K-J, Schreiber U and Heber U (1985) Planta, in press

  12. Duysens LNM and Sweers HE (1963) In studies on microalgae and photosynthetic bacteria, pp. 353–372. Tokyo: University of Tokyo Press

    Google Scholar 

  13. Duysens LNM, den Haan GA and van Best JA (1975) In Proc 3rd Int Congr Photosynth (Avron M, ed.) Vol 1, pp. 1–12. Amsterdam. Elsevier

    Google Scholar 

  14. Heber U and Santarius KA (1970) Z Naturforsch 25b:718–728

    Google Scholar 

  15. Heber U (1973) Biochim Biophys Acta 305:140–152

    Google Scholar 

  16. Jensen RG and Bassham JA (1966) Proc Nat Acad Sci US 56:1095–1101

    Google Scholar 

  17. Joliot A (1974) In Proc 3rd Congr Photosynth Res, Rehovot (Avron M, ed.) Vol 1, pp. 315–322, Elsevier: Amsterdam

    Google Scholar 

  18. Kautsky H, Appel W and Amann (1960) Biochem Z 332:277–292

    Google Scholar 

  19. Klimov VV, Klevanik AV, Shuvalov VA and Krasnovskii AA (1977) FEBS Lett 82:183–186

    Google Scholar 

  20. Krause GH, Briantais JM and Vernotte C (1982) Biochim Biophys Acta 679:116–124

    Google Scholar 

  21. Krause GH and Weis E (1984) Photosynth Res 5:139–187

    Google Scholar 

  22. Kyle DJ, Ohad I and Arntzen CJ (1984) Proc Nat Acad Sci US 81:4070–4074

    Google Scholar 

  23. Laasch H, Schreiber U and Urbach W (1983) FEBS Lett 159:275–279

    Google Scholar 

  24. Lavergne J (1982) Biochim Biophys Acta 682:345–353

    Google Scholar 

  25. Lavorel J and Etienne AL (1977) In primary processes of photosynthesis (Barber J, ed.) pp. 203–268. Amsterdam: Elsevier

    Google Scholar 

  26. Mauzerall D (1972) Proc Nat Acad Sci US 69:1358–1362

    Google Scholar 

  27. Papageorgiou G (1975) In bioenergetics of photosynthesis. (ed. Govindjee) pp. 319–371. New York: Academic Press

    Google Scholar 

  28. Quick WP and Horton P (1984) Proc R Soc Lond B 220:371–382

    Google Scholar 

  29. Renger G and Schreiber U (1985) In light emissions by plants and bacteria (Govindjee, Amesz J and Fork DC, eds.) New York: Academic Press, in press

    Google Scholar 

  30. Rienits KG, Hardt H and Avron M (1974) Eur J Biochem 43:291–298

    Google Scholar 

  31. Sane PV, Johanningmeier U and Trebst A (1979) FEBS Lett 108:136–140

    Google Scholar 

  32. Schreiber U and Avron M (1979) Biochim Biophys Acta 546:436–447

    Google Scholar 

  33. Schreiber U (1983) Photosynth Res 4:361–373

    Google Scholar 

  34. Schreiber U (1984) Biochim Biophys Acta 767:70–79

    Google Scholar 

  35. Schreiber U, Bilger W and Schliwa U (1985) Photosynth Res, in press

  36. Solioz M (1984) Trends Biochem Sci 9:309–312

    Google Scholar 

  37. Van Best (1977) Doctoral Thesis, State University of Leiden, the Netherlands

  38. Van Best JA and Duysens LNM (1977) Biochim Biophys Acta 459:187–206

    Google Scholar 

  39. Velthuys B and Amesz J (1974) Biochim Biophys Acta 333:85–94

    Google Scholar 

  40. Velthuys BR (1980) Ann Rev Plant Physiol 31:545–567

    Google Scholar 

  41. Velthuys BR (1981) FEBS Lett 126:277–281

    Google Scholar 

  42. Vermaas WFJ and Govindjee (1981) Photochem Photobiol 34:775–793

    Google Scholar 

  43. Vernotte C, Etienne AL and Briantais J-M (1979) Biochim Biophys Acta 545: 519–527

    Google Scholar 

  44. Yamashita T and Butler WL (1968) Plant Physiol 43:2037–2040

    Google Scholar 

  45. Zankel Kl (1973) Biochim Biophys Acta 325:138–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, U. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9, 261–272 (1986). https://doi.org/10.1007/BF00029749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029749

Key words

Navigation