Skip to main content
Log in

A reverse transcriptase activity in potato mitochondria

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A reverse transcriptase activity has been detected in potato mitochondria using special RNAs as templates: a bacterial RNA coding for neomycin phosphotransferase (neo pa RNA) and a Neurospora crassa mitochondrial RNA (184 nt RNA). Surprisingly, no exogenous primer addition was required. These RNA templates share a primary and secondary structure similar to the TψCG loop of tRNAs that could constitute the recognition site for the enzyme. Reverse transcriptase activity was inhibited by ddTTP, ethidium bromide and aphidicolin, while potato mitochondrial DNA polymerase was not inhibited by aphidicolin indicating that these activities correspond to distinct enzymes. A conserved sequence of reverse transcriptases was detected in potato mitochondrial DNA suggesting that this enzyme could be mitochondrially encoded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Boer PH, Gray MW: Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase-like protein (RTL) are linked to the ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. EMBO J 7: 3501–3508 (1988).

    Google Scholar 

  2. Chapdelaine Y, Bonen L: The wheat mitochondrial gene for subunit I of NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell 65: 465–472 (1991).

    Google Scholar 

  3. Collins RA, Stohl LL, Cole MD, Lambowitz AM: Characterization of a novel plasmid DNA found in N. crassa. Cell 24: 443–452 (1981).

    Google Scholar 

  4. Conklin PM, Wilson RK, Hanson M: Multiple trans-splicing events are required to produce a mature nad 1 transcript in a plant mitochondrion. Genes Devel 5: 1407–1415 (1991).

    Google Scholar 

  5. Gray MW, Doolitle WF: Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42 (1982).

    Google Scholar 

  6. Gray MW: Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol 5: 25–50 (1989).

    Google Scholar 

  7. Gray MW: The evolutionary origin of organelles. Trends Genet 5: 294–299 (1989).

    Google Scholar 

  8. Gray MW: The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233–357 (1992).

    Google Scholar 

  9. Grohman L, Brennicke A, Schuster W: The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera. Nucl Acids Res 20: 5641–5646 (1992).

    Google Scholar 

  10. Kennell JC, Moran JV, Perlman PS, Butow RA, Lambowitz AM: Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73: 133–146 (1993).

    Google Scholar 

  11. Kuiper MTR, Lambowitz AM: A novel reverse transcriptase associated with mitochondrial plasmids of Neurospora. Cell 55: 693–704 (1988).

    Google Scholar 

  12. Kuiper MTR, Sabourin JR, Lambowitz AM: Identification of a reverse transcriptase encoded by the Mauriceville and Varkud plasmids of Neurospora. J Biol Chem 265: 6936–6943 (1990).

    Google Scholar 

  13. Laquel P, Sallafranque-Andreola M, Tarrago-Litvak L, Castroviejo M, Litvak S: Wheat embryo DNA polymerase A reverse transcribes natural and synthetic RNA templates. Biochemical characterization and comparison with animal DNA polymerase γ and retroviral reverse transcriptase. Biochim Biophys Acta 1048: 139–148 (1990).

    Google Scholar 

  14. Nargang FE, Bell JE, Stohl LL, Lambowitz AM: The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell 38: 441–453 (1984).

    Google Scholar 

  15. Neuburger M, Journet EP, Bligny R, Carde JP, Douce R: Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll. Arch Biochem Biophys 217: 312–323 (1982).

    Google Scholar 

  16. Newton KJ: Plant mitochondrial genomes: organization, expression and variation. Annu Rev Plant Physiol Plant Mol Biol 39: 503–532 (1988).

    Google Scholar 

  17. Nugent JM, Palmer JD: RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus. Cell 66: 473–481 (1991).

    Google Scholar 

  18. Schuster W, Brennicke A: Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transfer between organelles via RNA? EMBO J 6: 2857–2863 (1987).

    Google Scholar 

  19. Schuster W: The mitochondrial genome on its way to the nucleus. FEBS Lett 325: 140–144 (1993).

    Google Scholar 

  20. Schuster W, Brennicke A: The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Annu Rev Plant Physiol Plant Mol Biol 45: 61–78 (1994).

    Google Scholar 

  21. Wahleithner JA, Macfarlane JL, Wohlstenholme DR: A sequence encoding a maturase-related protein in a group II intron of a plant mitochondrial nad1 gene. Proc Natl Acad Sci USA 87: 548–552 (1990).

    Google Scholar 

  22. Wang H, Kennell JC, Kuiper MTR, Sabourin JR, Saldanha R, Lambowitz AM: The Mauriceville plasmid of Neurospora crassa: characterization of a novel reverse transcriptase that begins cDNA synthesis at the 3′ end of template RNA. Mol Cell Biol 12: 5131–5144 (1992).

    Google Scholar 

  23. Wang H, Lambowitz A: The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to the reverse transcriptase and DNA polymerase progenitor. Cell 75: 1071–1081 (1993).

    Google Scholar 

  24. Wissinger B, Schuster W, Brennicke A: Trans-splicing in Oenothera mitochondria: nadl mRNAs are edited in exons and trans-splicing group II introns. Cell 65: 473–482 (1991).

    Google Scholar 

  25. Wolff G, Kück U: Organization and coding capacity of mitochondrial genomes in algae. In: Kück U, Brennicke A (eds) Plant Mitochondria, pp. 103–113. VCH, Weinheim, Germany (1994).

    Google Scholar 

  26. Wohlstenhome DR, Macfarlane JL, Beagly T, Thomson MC, Okada NA, Fauron CMR: Maize mitochondrial DNA: the nad1-gene-mat-r gene complex, a maturase related pseudogene linked to a nad2 exon and nad introns interrelationships. In: Kück U, Brennicke A (eds) Plant Mitochondria, pp. 131–161. VCH, Weinheim, Germany (1994).

    Google Scholar 

  27. Xiong Y, Eickbush T: Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362 (1990).

    Google Scholar 

  28. Zanlungo S, Quiñones V, Moenne A, Holuigue L, Jordana X: A ribosomal protein S10 gene is found in the mitochondrial genome in Solanum tuberosum. Plant Mol Biol 25: 743–749 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moenne, A., Bégu, D. & Jordana, X. A reverse transcriptase activity in potato mitochondria. Plant Mol Biol 31, 365–372 (1996). https://doi.org/10.1007/BF00021796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00021796

Key words

Navigation