Skip to main content
Log in

Photoacoustic spectroscopy (PAS) and its application in photosynthesis research

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adams MJ, Beadle BC, King AA and Kirkbright GF (1976) Analytical acoustic spectroscopy. Part II. Ultraviolet and visible optoacoustic spectra of some inorganic, biochemical and phytochemical samples. Analyst 101: 553–561

    Google Scholar 

  2. Adams MJ, Beadle BC and Kirkbright GF (1977) Analytical optoacoustic spectroscopy. Part IV. A double-beam optoacoustic spectrometer for use with solid and liquid samples in the ultraviolet, visible and near-infrared regions of the spectrum. Analyst 102: 569–575

    Google Scholar 

  3. Adams MJ, King AA and Kirkbright GF (1976) Analytical optoacoustic spectroscopy. Part I. Instrument assembly and performance characteristics. Analyst 101: 73–85

    Google Scholar 

  4. Adams MJ and Kirkbright GF (1977) Analytical optoacoustic spectroscopy. Part III. The optoacoustic effect and thermal diffusivity. Analyst 102: 281–292

    Google Scholar 

  5. Adams MJ and Kirkbright GF (1977) Thermal diffusivity and thickness measurements for solid samples utilising the optoacoustic seffect. Analyst 102: 678–682

    Google Scholar 

  6. Balasurbramanian D and Rao CM (1981) Photoacoustic spectroscopy of biological systems. Photochem Photobiol 34: 749–752

    Google Scholar 

  7. Barber J (1977) Primary processes of photosynthesis. Amsterdam: Elsevier

    Google Scholar 

  8. Bell AG (1881) Upon the production of sound by radiant energy. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 11: 510–528

    Google Scholar 

  9. Blank RE and Wakefield T (1979) Double-beam photoacoustic spectrometer for use in the ultraviolet, visible and near-infrared spectral regions. Anal Chem 51: 50–54

    Google Scholar 

  10. Bults G, Horwitz BA, Malkin S and Cahen D (1981) Frequency-dependent photoacoustic signals from leaves and their relation to photosynthesis. FEBS Letters 129: 44–46

    Google Scholar 

  11. Bults G, Horwitz BA, Malkins S and Cahen D (1982) Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange. Biochim Biophys Acta 679: 452–465

    Google Scholar 

  12. Bults G, Nordal PE and Kanstad SO (1982) in vivo studies of gross photosynthesis in attached leaves by means of photothermal radiometry. Biochim Biophys Acta 682: 234–237

    Google Scholar 

  13. Buschmann C and Prehn H (1981) in vivo studies of radiative and non-radiative de- excitation prosesses of pigments in Raphanus by photoacoustic spectroscopy. Photobiochem Photobiophys 2: 209–215

    Google Scholar 

  14. Buschmann C and Prehn H (1983) in vivo photoacoustic spectra of Raphanus and Tradescantia leaves taken at different chopping frequencies of the excitation light. Photobiochem Photobiophys 5: 63–69

    Google Scholar 

  15. Cahen D, Garty H and Caplan SR (1978) Spectroscopy and energetics of the purple membrane Halobacterium halobium. FEBS Letters 91: 131–134

    Google Scholar 

  16. Cahen D, Malkin S and Lerner EI (1978) Photoacoustic spectroscopy of chloroplast membranes; listening to photosynthesis. FEBS Letters 91: 339–342

    Google Scholar 

  17. Canaani O, Cahen D and Malkin S (1982) Photosynthetic chromatic transitions and Emerson enhancement effects in intact leaves studied by photoacoustics. FEBS Letters 150: 142–146

    Google Scholar 

  18. Carpentier R, LaRue B and Leblanc RM (1983) Photoacoustic spectroscopy of Anacystis nidulans. Detection of photosynthetic activities. In Proc 3rd Intern Conf on Photoacoustic and Photothermic Spectroscopy, Paris p. 5–6

  19. Inoue Y, Watanabe A and Shibata K (1979) Transient variation of photoacoustic signal from leaves accompanying photosynthesis. FEBS Letters 101: 321–323

    Google Scholar 

  20. Jabben M, Braslavsky SE and Schaffner K (1983) Laser-induced optoacoustic spectroscopy (LIOAS) of phytochrome in vitro. In Proc 3rd Intern Conf on Photoacoustic and Photothermic Spectroscopy, Paris 5.14/1–5.14/3

  21. Joliot P and Joliot A (1968) A polarographic method for detection of oxygen production and reduction of Hill reagent by isolated chloroplasts. Biochim Biophys Acta 153: 625–634

    Google Scholar 

  22. Kanstad SO, Cahen D and Malkins S (1983) Simultaneous detection of photosynthetic energy storage and oxygen evolution in leaves by photothermal radiometry and photoacoustics. Biochim Biophys Acta 772: 182–189

    Google Scholar 

  23. Kirkbright SF, Miller RM, Spillana REM and Vickers JP (1983) Applications of cross-correlation signal recovery in photoacoustics, In Proc 3rd Intern Conf on Photoacoustic and Photothermic Spectroscopy, Paris pp. 3.14/1–3.14/3

  24. Knoll W, Baumann J, Korpium P and Theilen U (1980) Phase separation in chlorophyll a containing dipalmitoyllecithin vesicles. A fluorescence and photoacoustic study. Biochem Biophys Res Commun 96: 968–974

    Google Scholar 

  25. Lasser-Ross N, Malkin S and Cahen D (1980) Photoacoustic detection of photosynthetic acitivities in isolated broken chloroplasts. Biochim Biophys Acta 593: 330–341

    Google Scholar 

  26. Lavorel J and Etienne AL (1977) in vivo chlorophyll fluorescence, In Barber J, ed. Primary Processes of photosynthesis, pp. 203–268. Amsterdam: Elsevier

    Google Scholar 

  27. Malkin S and Cahen D (1979) Photoacoustic spectroscopy and radiant energy conversion: Theory of the effect with special emphasis on photosynthesis. Photochem Photobiol 29: 803–813

    Google Scholar 

  28. Malkin S and Cahen D (1981) Dependence of photoacoustic signal on optical absorption coefficient in optically dense liquids. Anal Chem 53: 1426–1432

    Google Scholar 

  29. Malkin S, Lasser-Ross N, In Akoyunoglou G, ed. Photosynthesis III. Structure and molecular organisation of the photosynthetic apparatus, pp. 1031–1042. Philadelphia: Balaban International Science Service

  30. Moore TA, Benin D and Roderick T (1983) Photoacoustic measurement of photophysical properties of photosynthetic pigments: Porphyrins and chlorophylls In Proc 3rd Intern Conf on Photoacoustic and Photothermic Spectroscopy, Paris pp. 5.5/1–5.5/2

  31. Neubacher H, Scharmann A and Lohmann W (1982) Die Anwendung der Photoakustischen Spektroskopie in der Biophysik. In Hoppe W, eds. Biophysik 116–122. Berlin: Springer.

    Google Scholar 

  32. Ortner PB and Rosencwaig A (1977) Photoacoustic spectroscopic analysis of marine phytoplankton. Hydrobiologia 56: 3–6

    Google Scholar 

  33. Pao YH (1977) Optoacoustic spectroscopy and detection. New York: Academic Press

    Google Scholar 

  34. Poulet P, Chambron J and Unterreier R (1980) Quantitative photoacoustic spectroscopy applied to thermally thick samples. J Appl Phys 51: 1738–1742

    Google Scholar 

  35. Prehn H (1979) Photoakustische Spektroskopie. GIT-Fachzeitschrift für das Laboratorium 23: 281–289

    Google Scholar 

  36. Renard M and Delmelle M (1983) Photoacoustic calorimetry of bacteriorhodopsin photocycle. In Proc 3rd Intern Conf on Photoacoustic and Photothermic Spectoscopy, Paris p. 5.13/1–5.13/3

  37. Roger JP and Lepoutre F (1983) Experimental observations of thermal and acoustic modes in the gas of a photoacoustic cell, In Proc 3rd Intern Conf on Photoacoustic and Photothermic Spectroscopy, Paris pp. 1.3/1–1.3/3

  38. Rosencwaig A (1975) Photoacoustic spectroscopy — A new tool for investigation of solids. Anal Chem 47: 592A-603A

    Google Scholar 

  39. Rosencwaig A (1975) Photoacoustic spectroscopy of solids. Physics today 28: 23–30

    Google Scholar 

  40. Rosencwaig A (1978) Theoretical aspects of photoacoustic spectroscopy J Appl. Phys 49: 2905–2910

    Google Scholar 

  41. Rosencwaig A (1978) Photoacoustic spectroscopy. Advances in electronics and electron physics 46: 207–311

    Google Scholar 

  42. Rosencwaig A (1980) Photoacoustics and photoacoustic spectroscopy. New York: John Wiley

    Google Scholar 

  43. Rosencwaig A and Gersho A (1975) Photoacoustic effect with solids: A theoretical treatment. Science 190: 556–557

    Google Scholar 

  44. Rosencwaig A and Gersho A (1976) Theory of the photoacoustic effect with solids. J Appl Physics 47: 64–69

    Google Scholar 

  45. Schubert W, Giani D, Krumbein WE and Schmidt W (1980) Photoacoustic in vivo spectra of recent stromatolites. Naturwiss 67: 129–132

    Google Scholar 

  46. Somoano RT (1978) Optoakustische Spektroskopie in kondensierten Phasen. Angew Chem 90: 250–258

    Google Scholar 

  47. Thomasset B (1981) Etudes cinétiques et morhologiques de cellules et d'organelles immobilisées, spectroscopie photoacoustique et fluorescence à basse température de thylakoides stabilisés. Ph D Thesis, Compiégne

  48. Veeranjaneyulu K and Das VSR (1982) Photoacoustic spectroscopy — Leaf absorption spectra. J Exp Bot 33: 515–519

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buschmann, C., Prehn, H. & Lichtenthaler, H. Photoacoustic spectroscopy (PAS) and its application in photosynthesis research. Photosynth Res 5, 29–46 (1984). https://doi.org/10.1007/BF00018373

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018373

Keywords

Navigation