Skip to main content
Log in

The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The pc-1 mutant of Chlamydomonas reinhardtii has been shown to be incapable of protochlorophyllide photoconversion in vivo and is thought to be defective in light-dependent NADPH:protochlorophyllide oxidoreductase activity. We have isolated and characterized the nuclear genes encoding this enzyme from wild-type and pc-1 mutant Chlamydomonas cells. The wild-type CRlpcr-1 gene encodes a 397 amino acid polypeptide of which the N-terminal 57 residues comprise the chloroplast transit sequence. The Chlamydomonas protochlorophyllide reductase has 66–70% identity (79–82% similarity) to the higher plant enzymes. Transcripts encoding protochlorophyllide reductase are abundant in dark-grown wild-type cells, but absent or at very low levels in cells grown in the light. Similarily, immunoreactive protochlorophyllide reductase protein is also present to a greater extent in dark-versus light-grown wild-type cells. Both pc-1 and pc-1 y-7 cells lack CRlpcr-1 mRNA and the major (36 kDa) immunodetectable form of protochlorophyllide reductase consistent with their inability to photoreduce protochlorophyllide. DNA sequence analysis revealed that the lpcr gene in pc-1 y-7 cells contains a two-nucleotide deletion within the fourth and fifth codons of the protochlorophyllide reductase precursor that causes a shift in the reading frame and results in premature termination of translation. The absence of protochlorophyllide reductase message in pc-1 and pc-1 y-7 cells is likely the consequence of this frameshift mutation in the lpcr gene. Introduction of the CRlpcr-1 gene into pc-1 y-7 cells by nuclear transformation was sufficient to restore the wild-type phenotype. Transformants contained both protochlorophyllide reductase mRNA and immunodetectable enzyme protein. These studies demonstrate that pc-1 was in fact a defect in protochlorophyllide reductase activity and provide the first in vivo molecular evidence that the lpcr gene product is essential for light-dependent protochlorophyllide reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel K: The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease in translatable mRNA coding for the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 120: 89–93 (1981).

    Google Scholar 

  2. Apel K, Santel J-J, Redlinger TE, Falk H: The protochorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH protochlorophyllide oxidoreductase. Eur J Biochem 111: 251–258 (1980).

    Google Scholar 

  3. Armstrong GA, Runge S, Frick G, Sperling U, Apel K: Identification of NADPH:protochlorophyllide oxidoreductases A and B: A branched pathway for lightdependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108: 1505–1517 (1995).

    Google Scholar 

  4. Batschauer A, Apel K: An inverse control by phytochrome of the expression of two nuclear genes in barley (Hordeum vulgare L.). Eur J Biochem 143: 593–597 (1984).

    Google Scholar 

  5. Bauer CE, Bollivar DW, Suzuki JY: Genetic analysis of photopigment biosynthesis in eubacteria: A guiding light for algae and plants. J Bact 175: 3919–3925 (1993).

    Google Scholar 

  6. Beale SI, Weinstein JD: Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HM (ed) Biosynthesis of Heme and Chlorophyll, pp. 297–391. McGraw-Hill, New York (1990).

    Google Scholar 

  7. Beelman CA, Parker R: Degradation of mRNA in eukaryotes. Cell 81: 179–183 (1995).

    Google Scholar 

  8. Benli M, Schulz R, Apel K: Effect of light on the NADPH-protochlorophyllide oxidoreducatase of Arabidopsis thaliana. Plant Mol Biol 16: 615–625 (1991).

    Google Scholar 

  9. Blankenship JE, Kindle KL: Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1 nit2 strain. Mol Cell Biol 12: 5268–5279 (1992).

    Google Scholar 

  10. Bogorad L: Factors associated with the synthesis of chlorophyll in the dark in seedlings of Pinus jeffreyi. Bot Gaz 111: 221–241 (1950).

    Google Scholar 

  11. Choquet Y, Rahire M, Girard-Bascou J, Erickson J, Rochaix J-D: A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11: 1697–1704 (1992).

    Google Scholar 

  12. Cheng J, Maquat LE: Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA. Mol Cell Biol 13: 1892–1902 (1993).

    Google Scholar 

  13. Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995 (1984).

    Google Scholar 

  14. Darrah PM, Kay SA, Teakle GR, Griffiths WT: Cloning and sequencing of protochlorophyllide reductase. Biochem J 265: 789–798 (1990).

    Google Scholar 

  15. de Hostos EL, Schilling J, Grossman AR: Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet 218: 229–239 (1989).

    Google Scholar 

  16. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    Google Scholar 

  17. Diener DR, Curry AM, Johnson KA, Williams BD, Lefebvre PA, Kindle KL, Rosenbaum JL: Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. Proc Natl Acad Sci USA 87: 5739–5743 (1990).

    Google Scholar 

  18. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    Google Scholar 

  19. Ford C, Wang W-Y: Three new yellow loci in Chlamydomonas reinhardtii. Mol Gen Genet 179: 259–263 (1980).

    Google Scholar 

  20. Ford C, Wang W-Y: Temperature sensitive yellow mutants of Chlamydomonas reinhardtii. Mol Gen Genet 180: 5–10 (1980).

    Google Scholar 

  21. Ford C, Mitchell S, Wang W-Y: Protochlorophyllide photoconversion mutants of Chlamydomonas reinhardtii. Mol Gen Genet 184: 460–464 (1981).

    Google Scholar 

  22. Ford C, Mitchell S, Wang W-Y: Characterization of NADPH:protochlorophyllide photoconversion in the y-7 and pc-1 y-7 mutants of Chlamydomonas reinhardtii. Mol Gen Genet 194: 290–292 (1983).

    Google Scholar 

  23. Forreiter C, van Cleve B, Schmidt A, Apel K: Evidence for a general light-dependent negative control of NADPH-protochlorophyllide oxidoreductase in angiosperms. Planta 183: 126–132 (1990).

    Google Scholar 

  24. Forreiter C, Apel K: Light-independent and lightdependent protochlorophyllide-reducing activities and two distinct NADPH-prototochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mungo). Planta 190: 536–545 (1993).

    Google Scholar 

  25. Franzén LG: Analysis of chloroplast and mitochondrial targeting sequences from the green alga Chlamydomonas reinhardtii. Biol Membr 11: 304–309 (1994).

    Google Scholar 

  26. Frohman MA, Dush MK, Martin GR: Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85: 8998–9002 (1988).

    Google Scholar 

  27. Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S: Structural and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 9779–9783 (1990).

    Google Scholar 

  28. Goldschmidt-Clermont M: The two genes for the small subunit of RuBP carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii. Plant Mol Biol 6: 13–21 (1986).

    Google Scholar 

  29. Goldschmidt-Clermont M, Rahire M: Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191: 421–432 (1986).

    Google Scholar 

  30. Griffiths WT: Protochlorophyll and protochlorophyllide as precursors for chlorophyll synthesis in vitro. FEBS Lett 49: 196–200 (1974).

    Google Scholar 

  31. Gromoff ED, Treier U, Beck CF: Three light inducible heat shock genes of Chlamydomonas reinhardtii. Mol Cell Biol 15: 3911–3918 (1989).

    Google Scholar 

  32. Hagan KW, Ruiz-Echevarria MJ, Quan Y, Peltz SW: Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol Cell Biol 15: 809–823 (1995).

    Google Scholar 

  33. Harris EH: The Chlamydomonas Source Book: A Comprehensive Guide to Biology and Laboratory Use, Academic Press, San Diego (1989).

    Google Scholar 

  34. Hauser I, Dehesh K, Apel K: Proteolytic degraadation in vitro of the NADPH-protochlorophyllide reductase of barley (Hordeum vulgare L.). Arch Biochem Biophys 228: 577–586 (1984).

    Google Scholar 

  35. He Z, Li J, Sundqvist C, Timko MP: Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol 106: 537–546 (1994).

    Google Scholar 

  36. Hill KL, Li HH, Singer J, Merchant S: Isolation and structural characterization of the Chlamydomonas reinhardtii gene for cytochrome c 6: analysis of kinetics and metal specificity of its copper-responsive expression. J Biol Chem 266: 15060–15067 (1991).

    Google Scholar 

  37. Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K: Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.) Proc Natl Acad Sci USA 92: 3254–3258 (1995).

    Google Scholar 

  38. Imbault P, Wittemer C, Johanningmeier U, Jacobs JD, Howell SH: Structure of the Chlamydomonas reinhardtii cabII-1 gene encoding a chlorophyll-a/b-binding protein. Gene 73: 397–407 (1988).

    Google Scholar 

  39. Ish-Shalom D, Kloppstech K, Ohad I: Light-regulation of the 22 kd heat shock gene transcription and its translation product accumulation in Chlamydomonas reinhardtii. EMBO J 9: 2657–2661 (1990).

    Google Scholar 

  40. Jasper F, Quednau B, Kortenjann M, Johanningmeier U: Control of cab gene expression in synchronized Chlamydomonas reinhardtii cells. J Photochem Photobiol B: Biol 11: 139–150 (1991).

    Google Scholar 

  41. Jofuku KD, Schipper RD, Goldberg RB: A frameshift mutation prevents Kunitz tripsin inhibitor mRNA accumulation in soybean embryos. Plant Cell 1: 427–435 (1989).

    Google Scholar 

  42. Johanningenmeier U, Howell SH: Regulation of lightharvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardtii. Possible involvement of chlorophyll synthesis precursors. J Biol Chem 259: 13541–13549 (1984).

    Google Scholar 

  43. Kindle KL: Expression of a gene for light-harvesting chlorophyll a/b binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Mol Biol 9: 547–563 (1987).

    Google Scholar 

  44. Kindle KL: High-frequency nuclear transformation of Chlamydomonas reinhardtii Proc Natl Acad Sci USA 87: 1228–1232 (1990).

    Google Scholar 

  45. Kindle KL, Schnell RA, Fernandez E, Lefebvre PA: Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109: 2589–2601 (1989).

    Google Scholar 

  46. Kittsteiner U, Paulsen H, Schendel R, Rudiger W: Lack of light regulation of NADPH:protochlorophyllide oxidoreductase mRNA in cress seedling (Lepidium sativum L.). Z Naturforsch 45C: 1077–1079 (1990).

    Google Scholar 

  47. Kozak M: The scanning model for translation: an update. J Cell Biol 108: 229–241 (1989).

    Google Scholar 

  48. Labesse G, Vidal-Cros A, Chomilier J, Gaudry M, Mornon J-P: Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-accepting oxidoreductases: the single-domain reductases/epimerases/dehydrogenases (the ‘Red’ family). Biochem J 304: 95–99 (1994).

    Google Scholar 

  49. Leeds P, Peltz SW, Jacobson A, Culbertson MR: The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Devel 5: 2303–2314 (1991).

    Google Scholar 

  50. Li J, Goldschmidt-Clermont M, Timko MP: Chloroplastencoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 1817–1829 (1993).

    Google Scholar 

  51. Liu X-Q, Xu H, Huang C: Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297–308 (1993).

    Google Scholar 

  52. Losson R, Lacroute F: Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc Natl Acad Sci USA 76: 5134–5137 (1979).

    Google Scholar 

  53. Matters GL, Beale SI: Structural and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617–629 (1994).

    Google Scholar 

  54. Matters GL, Beale SI: Structure and expression of the Chlamydomonas reinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, δ-aminolevulinic acid dehydratase (porphobilinogen synthase). Plant Mol Biol 27: 607–617 (1995).

    Google Scholar 

  55. Mayfield SP: Overexpression of the oxygen-evolving enhancer 1 protein and its consequences on photosystem II accumulation. Planta 185: 105–110 (1991).

    Google Scholar 

  56. Mayfield SP, Schirmer-Rahire M, Frank G, Zuber H, Rochaix J-D: Analysis of the genes of the OEE1 and OEE3 proteins of the photosystem II complex from Chlamydomonas reinhardtii. Plant Mol Biol 12: 683–693 (1989).

    Google Scholar 

  57. Meyer G, Bliedung H, Kloppstech K: NADPH-protochlorophyllide oxidoreductase: reciprocal regulation in mono- and dicotyledonean plants. Plant Cell Rep 2: 26–29 (1983).

    Google Scholar 

  58. Mitchell DR, Kang Y: Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene. J Cell Biol. 113: 835–842 (1991).

    Google Scholar 

  59. Mosinger E, Batschauer A, Schafer E, Apel K: Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare L.). Eur J Biochem 147: 137–142 (1985).

    Google Scholar 

  60. Nilsson G, Belasco JG, Cohen SN, von Gabain A: Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc Natl Acad Sci USA 84: 4890–4894 (1987).

    Google Scholar 

  61. Oliver RP, Griffiths WT: Covalent labeling of the NADPH-protochlorophyllide oxidoreductase from etioplast membranes with (3H)N-phenylmaleimide. Biochem J 195: 93–101 (1981).

    Google Scholar 

  62. Peltz SW, Brewer G, Bernstein P, Ross J: Regulation of mRNA turnover in eukaryotic cells. Crit Rev Eukar Gene Exp 1: 99–126 (1991).

    Google Scholar 

  63. Peltz SW, Jacobson A: mRNA stability: in trans-it. Cur Opin Cell Biol 4: 979–983 (1992).

    Google Scholar 

  64. Peltz SW, Brown AH, Jacobson A: mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Devel 7: 1737–1754 (1993).

    Google Scholar 

  65. Quesada R, Galvan A, Fernandez E: Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J 5: 407–419 (1994).

    Google Scholar 

  66. Quinn J, Li HH, Singer J, Morimoto B, Mets L, Kindle K, Merchant S: The plastocyanin-deficient phenotype of Chlamydomonas reinhardtii Ac-208 results from a frameshift mutation in the nuclear gene encoding preapoplastocyanin. J Biol Chem 268: 7832–7841 (1993).

    Google Scholar 

  67. Röbbeln G: Über die Protochlorophyllreduktion in einer Mutant von Arabidopsis thaliana (L) Heynh. Planta 47: 532 (1956).

    Google Scholar 

  68. Rochaix J-D: Posttranscriptional steps in the expression of chloroplast genes. Annu Rev Cell Biol 8: 1–28 (1992).

    Google Scholar 

  69. Rochaix JD, Mayfield S, Goldschmidt-Clermont M, Erikson J: Molecular Biology of Chlamydomonas. In: Shaw CH (ed) Plant Molecular Biology: A Practical Approach, pp. 253–275. IRL Press, Oxford (1988).

    Google Scholar 

  70. Roitgrund C, Mets LJ: Localization of two novel chloroplast genome functions: trans-splicing of RNA and protochlorophyllide reduction. Curr Genet 17: 147–153 (1990).

    Google Scholar 

  71. Sager R: Inheritance in the green alga Chlamydomonas reinhardtii. Genetics 40: 476–489 (1955).

    Google Scholar 

  72. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  73. Schulz R, Senger H: Protochlorophyllide reductase: a key enzyme in the greening process. In: Sundqvist C, Ryberg M (eds) Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp. 179–218., Academic Pres, New York (1993).

    Google Scholar 

  74. Schulz R, Steinmuller K, Klaas M, Forreiter C, Rasmussen S, Hiller C, Apel K: Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217: 355–361 (1989).

    Google Scholar 

  75. Silflow CD, Chisholm RL, Conner TW, Ranum LPW: The two α-tubulin genes of Chlamydomonas reinhardtü code for slightly different proteins. Mol Cell Biol 5: 2389–2398 (1985).

    Google Scholar 

  76. Smart EJ, Selman BR: Complementation of a Chlamydomonas reinhardtii mutant defective in the nuclear gene encoding the chloroplast coupling factor (CF1) γ-subunit (atpC). J Bioenerg Biomemb 3: 275–284 (1993).

    Google Scholar 

  77. Soeinde OA, Kindle KL: Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 90: 9199–9203 (1993).

    Google Scholar 

  78. Spano AJ, He Z, Michel H, Hunt DF, Timko MP: Molecular cloning, nuclear gene structure, and developmental expression of NADPH-protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18: 967–972 (1992).

    Google Scholar 

  79. Spano AJ, He Z, Timko MP: NADPH:protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (Pinus taeda). Evidence for light and developmental regulation of expression and conservation in gene organization and protein structure between angiosperms and gymnosperms. Mol Gen Genet 236: 86–95 (1992).

    Google Scholar 

  80. Suzuki JY, Bauer CE: Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929–940 (1992).

    Google Scholar 

  81. Suzuki JY, Bauer CE: A prokaryotic origin for lightdependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci USA 92: 3749–3753 (1995).

    Google Scholar 

  82. Teakle GR, Griffiths WT: Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 196: 225–230 (1993).

    Google Scholar 

  83. Urlaub G, Mitchell PJ, Ciudad CJ, Chasin LA: Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Mol Cell Biol 9: 2868–2880 (1989).

    Google Scholar 

  84. Voelker TA, Moreno J, Crispeels MJ: Expression analysis of a pseudogene in transgenic tobacco: a frameshift mutation prevent mRNA accumulation. Plant Cell 2: 255–261 (1990).

    Google Scholar 

  85. Wilks HM, Timko MP: A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase. Identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci USA 92: 724–728 (1995).

    Google Scholar 

  86. Zimmer WE, Schloss JA, Silflow CD, Youngblom J, Watterson DM: Structural organization, DNA sequence, and expression of the calmodulin gene. J Biol Chem 263: 19370–19383 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Timko, M.P. The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30, 15–37 (1996). https://doi.org/10.1007/BF00017800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017800

Key words

Navigation