Skip to main content
Log in

Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Chemical measures for the biomass, community structure, nutritional status, and metabolic activities of microbes in biofilms attached to detrital or sediment surfaces based on analysis of components of cells and extracellular polymers represent a quantitative and sensitive method for the analysis of predation. These methods require neither the quantitative removal of the organisms from the surfaces nor the efficient culture of each group of microbes for analysis of predation effects on the biofilm. The biomass of microbes can be determined by measuring the content of cellular components found universally in relatively constant amounts. If these components have a high natural turnover or are rapidly lost from viable cells, they can be utilized to measure the viable cell mass. The membrane phospholipids have a naturally high turnover, are found in all cellular membranes, are rapidly hydrolyzed on cell death, and are found in reasonably constant amounts in bacterial cells as they occur in nature. Estimates of the viable biomass by phospholipid content correspond to estimates from the content of muramic acid, ATP, several enzyme activities, direct cell counts, and in some cases viable counts of subsurface sediments. The analysis of the ester-linked fatty acids of the phospholipids (PLFA) using capillary gas chromatography/mass spectrometry (GC/MS) provides sufficient information for the detection of specific subsets of the microbiota based on patterns of PLFA. With this technique shifts in community structure can be quantitatively assayed. Some of the microbiota form specific components such as poly beta-hydroxyalkanoate (PHA) under conditions of unbalanced growth. Others form polysaccharide glycocalyx when subjected to mechanical or chemical stress. The combination of analysis of phospholipids, PLFA, PHA, and glycocalyx provides a definition of the biomass, community structure, and metabolic status of complex microbial communities. These methods involve chromatographic separation and analysis so rates of incorporation or turnover into specific components can be utilized as measures of metabolic activities. With these methods it has proved possible to show that amphipod grazing can induce shifts in biofilm community structure, nutritional status, and metabolic activities. With this technology it proved possible to show resource partitioning amongst sympatric detrital feeding amphipods, prey specificity of feeding of benthic microvores, effects of sedimentary microtopology on predation, and shifts in the microbiota by exclusion of top epibenthic predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balkwill, D. L., F. R. Leach, J. T. Wilson, J. F. McNabb & D. C. White, 1987. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct cell counts in subsurface sediments. Microbial Ecology 13: 000–000.

    Google Scholar 

  • Bobbie, R. J. & D. C. White, 1980. Characterization of benthic microbial community structure by high resolution gas chromatography of fatty acid methyl esters. Appl. Environ. Microbiol. 39: 1212–1222.

    PubMed  CAS  Google Scholar 

  • Davis, W. M. & D. C. White, 1980. Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital and sedimentary microbial biomass and physiological status. App. Environ. Microbiol. 40: 539–548.

    CAS  Google Scholar 

  • Edlund, A., P. D. Nichols, R. Roffey & D. C. White, 1985. Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J. Lipid Res. 26: 982–988.

    PubMed  CAS  Google Scholar 

  • Fazio, S. A., J. Uhlinger, J. H. Parker & D. C. White, 1982. Estimations of uronic acids as quantitative measures of extracellular polysaccharide and cell wall polymers from environmental samples. Appl. Environ. Microbiol. 43: 1151–1159.

    PubMed  CAS  Google Scholar 

  • Federle, T. W. & D. C. White, 1982. Preservation of estuarine sediments for lipid analysis of biomass and community structure of the microbiota. Appl. Environ. Microbiol. 44: 1166–1169.

    PubMed  CAS  Google Scholar 

  • Federle, T. W., M. A. Hullar, R. J. Livingston, D. A. Meeter & D. C. White, 1983a. Spatial distribution of biochemical parameters indicating biomass and community composition of microbial assemblies in estuarine mud flat sediments. Appl. Environ. Microbiol. 45: 58–63.

    PubMed  Google Scholar 

  • Federle, T. W., R. J. Livingston, D. A. Meeter & D. C. White, 1983b. Modification of estuarine sedimentary microbiota by exclusion of top predators. J. Exp. Marine Biol. Ecol. 73: 81–94.

    Article  CAS  Google Scholar 

  • Federle, T. W., R. J. Livingston, L. E. Wolfe & D. C. White, 1986. A quantitative comparison of microbial community structure of estuarine sediments from microcosms and the field. Canad. J. Microbiol. 32: 319–325.

    Google Scholar 

  • Findlay, R. H., 1986. Assessment of the effects of predation disturbance on the marine sedimentary microbial community: methods and applications. Ph.D. Thesis, The Florida State University, Tallahassee, FL 32306, USA.

    Google Scholar 

  • Findlay, R. H. & D. C. White, 1983a. The effects of feeding by the sand dollar Mellita quinquiesperforata on the benthic microbial community. J. Exp. Mar. Biol. Ecol. 72: 25–41.

    Article  CAS  Google Scholar 

  • Findlay, R. H. & D. C. White, 1983b. Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl. Environ. Microbiol. 45: 71–78.

    PubMed  CAS  Google Scholar 

  • Findlay, R. H. & D. C. White, 1984. In situ determination of metabolic activity in aquatic environments. Microbiological Sciences 1: 90–95.

    PubMed  CAS  Google Scholar 

  • Findlay, R. H., D. J. W. Moriarty & D. C. White, 1983. Improved method of determining muramic acid from environmental samples. Geomicrobiology J. 3: 133–150.

    Article  Google Scholar 

  • Findlay, R. H., P. C. Pollard, D. J. W. Moriarty & D. C. White, 1985. Quantitative determination of microbial activity and community nutritional status in estuarine sediments: evidence for a disurbance artifact. Canad. J. Microbiol. 31: 493–498.

    Article  CAS  Google Scholar 

  • Frerman, F. F. & D. C. White, 1967. Membrane lipid changes during formation of a functional electron transport system in Staphylococcus aureus. J. Bacteriol. 94: 1868–1874.

    PubMed  CAS  Google Scholar 

  • Gehron, M. J. & D. C. White, 1982. Quantitative determination of the nutritional status of detrital microbiota and the grazing fauna by triglyceride glycerol analysis. J. Exp. Mar. Biol. Ecol. 64: 145–158.

    Article  CAS  Google Scholar 

  • Gehron, M. J. & C. D. White, 1983. Sensitive assay of phospholipid glycerol in environmental samples. J. Microbiol. Methods 1: 23–32.

    Article  CAS  Google Scholar 

  • Guckert, J. B., C. B. Antworth, P. D. Nichols & D. C. White, 1985. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. F.E.M.S. Microbiol. Ecology 31: 147–158.

    CAS  Google Scholar 

  • Guckert, J. B., M. A. Hood & D. C. White, 1986. Phospholipid, ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52: 794–801.

    PubMed  CAS  Google Scholar 

  • Guckert, J. B., 1986. Phospholipid ester-linked fatty acid analysis in microbial ecology: importance of trans acids. Ph.D. Thesis, The Florida State University, Tallahassee, FL 32306, USA.

    Google Scholar 

  • Hedrick, D. B. & D. C. White, 1986. Microbial respiratory quinones in the environment I. A sensitive liquid chromatographic method. J. Microbiol. Methods 5: 243–254.

    Article  CAS  Google Scholar 

  • Hewlett-Packard, 1985. HP 5898A Microbial Identification System. Pub. No. 43–5953–1825.

  • Hollander, R., G. Wolf & W. Mannheim, 1977. Lipoquinones of some bacteria and mycoplasmas, with considerations on their functional significance. Antonie van Leeuwenhoek 43: 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Johannes, R. E., 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10: 434–442.

    Article  Google Scholar 

  • Joyce, G. H., R. K. Hammond & D. C. White, 1970. Changes in membrane lipid composition in exponentially growing Staphylococcus aureus during the shift from 37 to 25°C. J. Bacteriol. 104: 323–330.

    PubMed  CAS  Google Scholar 

  • King, J. D., D. C. White & C. W. Taylor, 1977. Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora. Appl. Environ. Microbiol. 33: 1177–1183.

    PubMed  CAS  Google Scholar 

  • Lechevalier, M. P., 1977. Lipids in bacterial taxonomy — a taxonomist's view. Crit. Rev. Microbiol. 7: 109–210.

    Google Scholar 

  • Moriarty, D. J. W., 1977. Improved method using muramic acid to estimate biomass of bacteria in sediments. Oecologia (Berl.) 26: 317–323.

    Article  Google Scholar 

  • Moriarty, D. J. W. & P. C. Pollard, 1982. Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar. Biol. 72: 165–173.

    Article  Google Scholar 

  • Moriarty, D. J. W., D. C. White & T. J. Wassenberg, 1985. A convenient method for measuring rates of phospholipid synthesis in seawater and sediments: its relevance to the determination of bacterial productivity and the disturbance artifacts introduced by measurements. J. Microbiol. Methods 3: 321–330.

    Article  CAS  Google Scholar 

  • Morrison, S. J. & D. C. White, 1980. Effects of grazing by estuarine gammaridean amphipods on the microbiota of allochthonous detritus. Appl. Environ. Microbiol. 40: 659–671.

    PubMed  Google Scholar 

  • Morrison, S. J., J. D. King, R. J. Bobbie, R. E. Bechtold & D. C. White, 1977. Evidence of microfloral succession on allochthonous plant litter in Apalachicola Bay, Florida, U.S.A.Marine Biology 41: 229–240.

    Article  CAS  Google Scholar 

  • Nichols, P. D., G. A. Smith, C. P. Antworth, R. S. Hanson & D. C. White, 1985. Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for the methane-oxidizing bacteria. F.E.M.S. Microbiol. Ecology. 31: 327–335.

    CAS  Google Scholar 

  • Nichols, P. D., J. B. Guckert & D. C. White, 1986. Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GG-MS of their dimethyl disulphide adducts. J. Microbiol. Methods 5: 49–55.

    Article  CAS  Google Scholar 

  • Nickels, J. S., J. D. King & D. C. White, 1979. Poly-beta-hydroxybutyrate accumulation as a measure of unbalanced growth of the estuarine detrital microbiota. Appl. Environ. Microbiol. 37: 459–465.

    PubMed  CAS  Google Scholar 

  • Nickels, J. S., R. J. Bobbie, D. F. Lott, R. F. Martz, P. H. Benson & D. C. White, 1981a. Effect of manual brush cleaning on the biomass and community structure of the microfouling film formed on aluminum and titanium surfaces exposed to rapidly flowing seawater. Appl. Environ. Microbiol. 41: 1442–1453.

    PubMed  CAS  Google Scholar 

  • Nickels, J. S., R. J. Bobbie, R. F. Martz, G. A. Smith, D. C. White & N. L. Richards, 1981b. Effect of silicate grain shape, structure and location on the biomass and community structure of colonizing marine microbiota. Appl. Environ. Microbiol. 41: 1262–1268.

    PubMed  CAS  Google Scholar 

  • Odham, G., A. Tunlid, G. Westerdahl, L. Larsson, J. B. Guckert & D. C. White, 1985. Determination of microbial fatty acid profiles at femtomolar levels in human urine and the initial marine microfouling community by capillary gas chromatography-chemical ionization mass spectrometry with negative ion detection. J. Microbiol. Methods. 3: 331–344.

    Article  CAS  Google Scholar 

  • Ray, P. H., D. C. White & T. D. Brock, 1971. Effect of growth temperatures on the lipid composition of Thermus aquaticus. J. Bacteriol. 108: 227–235.

    PubMed  CAS  Google Scholar 

  • Saddler, N. & A. C. Wardlaw, 1980. Extraction, distribution and biodegradation of bacterial lipopolysaccharides in estuarine sediments. Antonie van Leeuwenhoek J. Microbiol. 46: 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Sasser, J. M., D. J. Fieldhouse & C. N. Carter, 1984. Computer assisted identification of bacteria based on fatty acid analysis. Abstr. An. Meet. Am. Phytopath. Soc. A 739 In Phytopathology 74: 882.

    Google Scholar 

  • Smith, G. A., J. S. Nickels, W. M. Davis, R. F. Martz, R. H. Findlay & D. C. White, 1982. Perturbations of the biomass, metabolic activity, and community structure of the estuarine detrital microbiota: resource partitioning by amphipod grazing. J. Exp. Mar. Biol. Ecol. 64: 125–143.

    Article  Google Scholar 

  • Smith, G. A., J. S. Nickels, B. D. Kerger, J. D. Davis, S. P. Collins, J. T. Wilson, J. F. McNabb & D. C. White, 1986a. Quantitative characterization of microbial biomass and community structure in subsurface material: A prokaryotic consortium responsive to organic contamination. Canad. J. Microbiol. 32: 104–111.

    CAS  Google Scholar 

  • Smith, G. A., P. D. Nichols & D. C. White, 1986b. Fatty acid composition and microbial activity of benthic marine sediments from McMurdo Sound, Antarctica. F.E.M.S. Microbiol. Ecology 32: 000–000.

    Google Scholar 

  • Tunlid, A., G. Odham, R. H. Findlay & D. C. White, 1985. Precision and sensitivity in the measurement of 15N enrichment in D-alanine from bacterial cell walls using positive/negative ion mass spectrometry. J. Microbiol. Methods 3: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Uhlinger, D. J. & D. C. White, 1983. Relationship between the physiological status and the formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica. Appl. Environ. Microbiol. 45: 64–70.

    PubMed  CAS  Google Scholar 

  • White, D. C., 1983. Analysis of microorganisms in terms of quantity and activity in natural environments. 34: 37–66. Microbes in their natural environments. Society for General Microbiology Symposium

    Google Scholar 

  • White, D. C., W. M. Davis, J. S. Nickels, J. D. King & R. J. Bobbie, 1979b. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40: 51–62.

    Article  Google Scholar 

  • White, D. C., R. J. Bobbie, J. S. Herron, J. D. King & S. J. Morrison, 1979c. Biochemical measurements of microbial mass and activity from environmental samples. pp. 69–81. Native Aquatic Bacteria: Enumeration, Activity and Ecology ASTM STP 695. American Soc. for Testing and Materials.

  • White, D. C., R. J. Bobbie, J. D. King, J. S. Nickels & P. Amoe, 1979d. Lipid analysis of sediments for microbial biomass and community structure. pp. 87–103. Methodology for Biomass Determinations and Microbial Activities in Sediments, ASTM STP 673. American Society for Testing and Materials.

  • White, D. C., R. J. Bobbie, J. S. Nickels, S. D. Fazio & W. M. Davis, 1980. Nonselective biochemical methods for the determination of fungal mass and community structure in estuarine detrital microflora. Botanica Marina 23: 239–250.

    CAS  Google Scholar 

  • White, D. C., G. A. Smith & G. R. Stanton, 1984. Biomass, community structure and metabolic activity of the microbiota in benthic marine sediments and sponge spicule mats. Antarctic J. United States 9: 125–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D.C., Findlay, R.H. Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms. Hydrobiologia 159, 119–132 (1988). https://doi.org/10.1007/BF00007373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007373

Key words

Navigation