Skip to main content
Log in

Biofilms on submerged River Red Gum (Eucalyptus camaldulensis Dehnh. Myrtaceae) wood in billabongs: an analysis of bacterial assemblages using phospholipid profiles

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biofilms were allowed to develop on wooden slides of the River Red Gum (Eucalyptus camaldulensis Dehnh., Myrtaceae) submerged in two billabongs of south-eastern Australia. The slides were placed in the photic zone and the aphotic zone, and the biofilms sampled after eight week's growth over the summer of 1989–1990 and winter of 1990. Bacterial numbers, estimated with epifluorescence microscopy, ranged from 4–78 × 106 cells cm−2. Bacteria were more abundant in the photic zone than the aphotic zone, and more abundant in summer than winter. Fewer than 0.5% of the bacteria could be cultivated on nutrient agar plates. Concentrations of phospholipids ranged from 8–79 ng cm−2, which corresponded to bacterial abundances of 2–17 × 106 cells cm−2. Fifty five phospholipid fatty acids (PLFA) were identified, of which 16:0 (13–29% of total PFLA) was the most common. Other abundant PFLA included 16:1ω7c (6–28%), 18:2ω6 (3–16%), 18:3ω3 (4–12%), 18:1ω9c (3–5%), 18:lω7c (5–11%) and 18:0 (2–8%). Minor PLFA included 14:0, i and a 15:0, 15:0, 16:lω5c, 16:1ω13c, 18:3ω6, 18:4ω3, 20:4ω6 and 20:5ω3. The PLFA profiles of the biofilms were quite different from those of the sediments and plankton. There was a clear distinction between the PLFA profiles of summer and winter biofilms, but less evidence for unequivocal site or light-regime effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G., I.-B. Gustafsson & M. Boberg, 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28: 37–50.

    Google Scholar 

  • Balkwill, D. L., F. R. Leach, J. T. Wilson, J. F. McNabb & D. C. White, 1988. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microb. Ecol. 16: 73–84.

    Google Scholar 

  • Baker, J. H. & D. R. Orr, 1986. Distribution of epiphytic bacteria on freshwater plants. J. Ecol. 74: 155–165.

    Google Scholar 

  • Bjornsen, P. & B. Riemann, 1988. Towards a quantitative stage in the study of microbial processes in pelagic carbon flows. Arch. Hydrobiol. Ergebn. Limnol. 31: 185–193.

    Google Scholar 

  • Blenkinsopp, S. A., P. A. Gabbott, C. Freeman & M. A. Lock, 1991. Seasonal trends in river biofilm storage products and electron transport system activity. Freshwat. Biol. 26: 21–34.

    Google Scholar 

  • Boon, P. L., 1990. Organic matter degradation and nutrient regeneration in Australian freshwaters: 11. Spatial and temporal variations, and relation with environmental conditions. Arch. Hydrobiol. 117: 405–436.

    Google Scholar 

  • Boon, P. I., 1991. Bacterial assemblages in rivers and billabongs of southeastern Australia. Microb. Ecol. 22: 27–52.

    Google Scholar 

  • Boon, P., J. Frankenberg, T. Hillman, R. Oliver & R. Shiel, 1990. Billabongs. In N. Mackay & D. Eastburn (eds.), The Murray. Murray-Darling Basin Commission, Canberra: 182–198.

    Google Scholar 

  • Boon, P. I. & B. K. Sorrell, 1991. Biogeochemistry of billabong sediments. I. The effect of macrophytes. Freshwat. Biol. 26: 209–226.

    Google Scholar 

  • Boulton, A. J. & P. I. Boon, 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Aust. J. mar. Freshwat. Res. 42: 1–43.

    Google Scholar 

  • Currie, B. R. & R. B. Johns, 1988. Lipids as indicators of the origin of organic matter in fine marine particulate matter. Aust. J. mar. Freshwat. Res. 39: 371–383.

    Google Scholar 

  • Findlay, S. E. G. & T. L. Arsuffi, 1989. Microbial growth and detritus transformations during decomposition of leaf litter in a stream. Freshwat. Biol. 21: 261–269.

    Google Scholar 

  • Findlay, R. H., G. M. King & L. Watling, 1989. Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl. envir. Microbiol. 55: 2888–2893.

    Google Scholar 

  • Fry, J. C. & N. C. B. Humphrey, 1978. Techniques for the study of bacteria epiphytic on aquatic macrophytes. In D. W. Lovelock & R. Davies (eds), Techniques for the study of mixed populations. Academic Press, London: 1–29.

    Google Scholar 

  • Gillan, F. T. & R. W. Hogg, 1984. A method for the estimation of bacterial biomass and community structure in mangrove-associated sediments. J. Microbiol. Meth. 2: 275–293.

    Google Scholar 

  • Golladay, S. W. & R. L. Sinsabaugh, 1991. Biofilm development on leaf and wood surfaces in a boreal river. Freshwat. Biol. 25: 437–450.

    Google Scholar 

  • Guckert, J. B., C. P. Antworth, P. D. Nichols & D. C. White, 1985. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in procaryotic community structure of estuarine sediments. FEMS Microbiol. Ecol. 31: 147–158.

    Google Scholar 

  • Guckert, J. B., M. A. Hood & D. C. White, 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibro cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. envir. Microbiol. 52: 794–801.

    Google Scholar 

  • Harlin, M. M., 1974. Epiphyte-host relationships in seagrass communities. Aquat. Bot. 1: 125–131.

    Google Scholar 

  • Hood M. A., J. B. Guckert, D. C. White & F. Deck, 1986. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl. envir. Microbiol. 52: 788–793.

    Google Scholar 

  • Jones, J. G., 1985. Microbes and microbial processes in sediments. Phil. Trans. r. Soc., Lond. 315 A: 3–17.

    Google Scholar 

  • Keppel, G., 1982. Design and analysis: a researcher's handbook. Prentice-Hall, Englewood Cliffs. 658 pp.

    Google Scholar 

  • Lock, M. A., 1981. River epilithon — a light organic energy transducer. In M. A. Lock & D. D. Williams (eds), Perspectives in running water ecology. Plenum Press, New York: 3–40.

    Google Scholar 

  • Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo & S. E. Charlton, 1984. River epilithon: toward a structural-functional model. Oikos 42: 10–22.

    Google Scholar 

  • Mancuso, C. A., P. D. Franzmann, H. R. Burton & P. D. Nichols, 1990. Microbial community structure and biomass estimates of a methanogenic Antarctic lake ecosystem as determined by phospholipid analysis. Microb. Ecol. 19: 73–95.

    Google Scholar 

  • Morikawa, K., 1988. Differences in the plating efficiency of bacteria from river epilithon sampled from upper and lower surfaces of artificial substrata. Microb. Ecol. 15: 217–228.

    Google Scholar 

  • Nichols, P. D. & Q. I. Espey, 1991. Characterization of organic matter at the air-sea interface, in subsurface water, and in bottom sediments near the Malabar sewage outfall in Sydney's coastal region. Aust. J. mar. Freshwat. Res. 42: 327–348.

    Google Scholar 

  • Nichols, P. D., C. A. Mancuso & D. C. White, 1987. Measurement of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model systems. Organ. Geochem. 11: 451–461.

    Google Scholar 

  • Nichols, P. D., A. C. Palsimano, M. S. Rayner, G. A. Smith & D. C. White, 1989. Changes in the lipid composition of Antarctic sea-ice communities during a spring bloom: an indication of community physiological status. Antarct. Sci. l: 133–140.

    Google Scholar 

  • Nichols, P. D., J. K. Volkman, A. C. Palsimano, G. A. Smith & D. C. White, 1988. Occurrence of an isoprenoid C25 diunsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. J. Phycol. 24: 90–96.

    Google Scholar 

  • O'Donnell, A. G., 1989. Fatty acid analysis in the identification of natural isolates: possibilities for in situ identification using multivariate pattern recognition. In T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita & A. Uchida (eds), Recent advances in microbial ecology, Japan Scientific Societies Press, Tokyo: 674–678.

    Google Scholar 

  • Parkes, R. J., 1987. Analysis of microbial communities within sediments using biomarkers. In M. Fletcher, T. R. G. Gray & J. G. Jones (eds), Ecology of microbial communities. Cambridge University Press, Cambridge: 147–177.

    Google Scholar 

  • Parkes, R. J. & J. Taylor, 1983. The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuar. coast. Shelf Sci. 16: 173–189.

    Google Scholar 

  • Penhale, P. A., 1977. Macrophyte-epiphyte biomass and productivity in an eelgrass (Zostera marina L.) community. J. exper. mar. Biol. Ecol. 26: 211–224.

    Google Scholar 

  • Perry, G. J., J. K. Volkman, R. B. Johns & H. R. Jr. Bavor, 1979. Fatty acids of bacterial origin in contemporary marine sediments. Geochim. Cosmochim. Acta 43: 1715–1725.

    Google Scholar 

  • Peterson, S. O., K. Henriksen, T. H. Blackburn & G. M. King, 1991. A comparison of phospholipid and chloroform fumigation analysis for biomass in soil: potentials and limitations. FEMS Microbiol. Ecol. 85: 257–268.

    Google Scholar 

  • Rajendran, N., O. Matsida, N. Imamura & Y. Urushigawa, 1992. Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Appl. envir. Microbiol. 58: 562–571.

    Google Scholar 

  • Riemann, B. & R. T. Bell, 1990. Advances in estimating bacterial biomass and growth in aquatic systems. Arch. Hydrobiol. 118: 385–402.

    Google Scholar 

  • Reimann, B. & M. Søndergaard, 1986. Bacteria. In B. Reimann & M. Søndergaard (eds), Carbon dynamics in eutrophic, temperate lakes. Elsevier, Amsterdam: 127–197.

    Google Scholar 

  • Sand-Jensen, K., 1983. Physical and chemical parameters regulating growth of periphytic communities. In R. G. Wetzel (ed.), Periphyton of freshwater ecosystems. Dr W. Junk Publishers, The Hague: 63–71.

    Google Scholar 

  • Scholz, O., 1991. Organic-matter degradation by periphytic bacteria in two River Murray billabongs. PhD thesis, Monash University, Melbourne. 172 pp.

    Google Scholar 

  • Scholz, O. & P. I. Boon. Alkaline phosphatase, aminopeptidase and β-D glucosidase activities associated with billabong periphyton. Arch. Hydrobiol., in press.

  • Tunlid, A. D. Ringelberg, T. J. Phelps, C. Low & D. C. White, 1989. Measurement of phospholipid fatty acids at picomolar concentrations in biofilms and deep subsurface sediments using gas chromatography and chemical ionization mass spectrometry. J. Microbiol. Meth. 10: 139–153.

    Google Scholar 

  • Underwood, A. J., 1981. Techniques of analysis of variance in experimental marine biology and ecology. Ocean. Mar. Biol. Ann. Rev. 19: 513–605.

    Google Scholar 

  • Vestal, J. R. & D. C. White, 1989. Lipid analysis in microbial ecology. BioScience 39: 535–541.

    Google Scholar 

  • Wetzel, R. G., 1983. Attached algal-substrata interactions: fact or myth, and when and how? In R. G. Wetzel (ed.), Periphyton of freshwater ecosystems. Dr W. Junk Publishers, The Hague: 207–215.

    Google Scholar 

  • Witzel, K.-P., 1990. Approaches to bacterial population dynamics. In J. Overbeck & R. J. Chrost (eds), Aquatic microbial ecology. Springer-Verlag, New York: 96–128.

    Google Scholar 

  • White, D. C., R. J. Bobbie, J. S. Herron, J. D. King & S. J. Morrison, 1979a. Biochemical measurements of microbial mass and activity from environmental samples. In J. W. Costerton & R. R. Colwell (eds), Native aquatic bacteria: enumeration, activity, and ecology. American Society for Testing and Material, Philadelphia: 69–81.

    Google Scholar 

  • White, D. C., W. M. Davis, J. S. Nickels, J. D. King & R. J. Bobbie, 1979b. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 51–62.

    Google Scholar 

  • White, D. C. & R. H. Findlay, 1988. Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms. Hydrobiologia 159: 119–132.

    Google Scholar 

  • Wilkinson, L., 1988. Systat: the system for statistics. Systat, Evanston, 822 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, O., Boon, P.I. Biofilms on submerged River Red Gum (Eucalyptus camaldulensis Dehnh. Myrtaceae) wood in billabongs: an analysis of bacterial assemblages using phospholipid profiles. Hydrobiologia 259, 169–178 (1993). https://doi.org/10.1007/BF00006596

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006596

Key words

Navigation