Skip to main content
Log in

Ferric iron reduction by Thiobacillus ferrooxidans at extremely low pH-values

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

When ferrous iron and sulfur were supplied, cells of T. ferrooxidans in a well-aerated medium started growth by oxidizing ferrous iron. After ferrous iron depletion a lagphase followed before sulfur oxidation started. During sulfur oxidation at pH-values below 1.3 (±0,2) the ferrous iron concentration increased again, although the oxygen saturation of the medium amounted to more than 95%. The number of viable cells did not increase. Thus resting cells of T. ferrooxidans, which are oxidizing sulfur to maintain their proton balance, reduce ferric to ferrous iron. The ferrous iron-oxidizing system seemed to be inhibited at pH-values below 1.3. At a pH-value of 1.8 the ferrous iron was reoxidized at once. A scheme for the linkage of iron- and sulfur metabolism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brierley CL (1982) Microbiological mining. Scientific American 247: 44–53

    CAS  Google Scholar 

  • Brock TD & Gustafson J (1976) Ferric iron reduction by sulfur and iron oxidizing bacteria. Applied and Environmental Microbiology 32: 567–571

    CAS  Google Scholar 

  • Anonymous (1984) Bestimmung von Eisen. In: Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, El. Verlag Chemie, Weinheim

  • Dugan PR & Apel WA (1978) Microbiological desulfurization of coal (pp 223–250) In: Murr LA, Torma AE & Brierley JA(Eds) Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena. Academic Press, New York

    Google Scholar 

  • Eccleston M & Kelly DP (1978) Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. Journal of Bacteriology 134: 718–727

    CAS  Google Scholar 

  • Harrison AP Jr (1981) Acidophilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. International Journal of Systematic Bacteriology 31: 327–332

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philosophic Transactions of the Royal Society, London Series B. 298: 499–528

    CAS  Google Scholar 

  • Kino K & Usami S (1982) Biological reduction of ferric iron by iron and sulfur oxidizing bacteria. Agricultural Biology and Biochemistry 46: 803–805

    CAS  Google Scholar 

  • Kulpa CF Mjoli N & Roskey MT (1986) Comparison of iron and sulfur oxidation in Thiobacillus ferroxidans: Inhibition of iron oxidation by growth on sulfur. In: Ehrlich HL & Holmes DS(Eds) Workshop on Biotechnology for the Mining, Metal-refining and Fossil Fuel Processing Industries. Biotechnology and Bioengineering Symposium No. 16, Interscience Publication. J. Wiley, New York

    Google Scholar 

  • Lawrence RW & Gunn JD (1985) Biological preoxidation of a pyrite gold concentrate. In: Spisak JK & Jergensen GV(Eds) (pp 13–17) Frontier Technology in Mineral Processing. AIME, New York, NY

    Google Scholar 

  • Lundgren DG, Boucheron J & Mahony W (1983) Geomicrobiology of iron: mechanisms of ferric iron reduction, In: Rossi G & Torma AE(Eds) Recent Progress in Biohydrometallurgy (pp 55–69) Associazione Mineraria Sarda, Italy

    Google Scholar 

  • Mackintosh, M.W., 1978. Nitrogen fixation by Thiobacillus ferrooxidans. Journal of General Microbiology 105: 215–218

    CAS  Google Scholar 

  • Marsh, R.M. and Norris P.R., 1983. Mineral sulphide oxidation by moderately thermophilic acidophilic bacteria. Biotechnology Letters 5: 585–590

    Article  CAS  Google Scholar 

  • Murr, L.E. and A.P. Metha, 1982. Coal desulfurization by leaching involving acidophilic and thermophilic microorganisms. Biotechnology Bioengineering 24: 743–748

    Article  CAS  Google Scholar 

  • Myerson, A.S., 1981. Oxygen mass transfer requirements during the growth of Thiobacillus ferrooxidans on iron pyrite. Biotechnology Bioengineering 23: 1413–1416

    Article  CAS  Google Scholar 

  • Silver, M. and D.G. Lundgren, 1968. Sulfur oxidizing enzyme of Thiobacillus ferrooxidans. Canadian Journal of Biochemistry 46: 457–461

    Article  CAS  Google Scholar 

  • Sugio, T., C. Domatsu, O. Munakata, T. Tano, and K. Imai, 1985. Role of a ferric iron reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Applied and Environmental Microbiology 49: 1401–1406

    CAS  Google Scholar 

  • Sundermeyer-Klinger, H., W. Meyer, B. Warninghoff, and E. Bock, 1984. Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Archives of Microbiology 140: 153–158

    Article  CAS  Google Scholar 

  • Suzuki, I., 1965. Oxidation of elemental sulfur by an enzyme system of Thiobacillus ferrooxidans. Biochimica et Biophysica Acta 104: 359–371

    CAS  Google Scholar 

  • Tuovinen, O.H. and D.P. Kelly, 1974. Studies on the growth of Thiobacillus ferrooxidans. Archives of Microbiology 95: 165–180

    Article  CAS  Google Scholar 

  • Vian M, Creo C, Dalmastri C, Gionni A, Palazzolo P & Levi G (1986) Thiobacillus ferrooxidans selection in continuous culture. In: Lawrence RW, Branion RMR & Ebner HG(Eds) Fundamental and Applied Biohydrometallurgy, (pp 395–401) Elsevier, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sand, W. Ferric iron reduction by Thiobacillus ferrooxidans at extremely low pH-values. Biogeochemistry 7, 195–201 (1989). https://doi.org/10.1007/BF00004217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004217

Key words

Navigation