Skip to main content

Bandgap Expansion: Photon Emission and Absorption

  • Chapter
  • First Online:
Book cover Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

The E G of a semiconductor is proportional to the first Fourier series coefficient of the interatomic potential. Skin-resolved bond contraction and entrapment perturb that the Hamiltonian originates and the increased fraction of undercoordinated atoms expands the E G. Energies of photon emission and photon absorption are superposition of the interatomic binding energy and the electron–phonon coupling i.e., Stokes shift. Polarization of the dangling bond electrons creates the mid-gap states and band tails, which lowers the quantum efficiency of photon emission; hydrogenation could annihilate such defect states. Graphenes with arm-chaired or reconstructed zigzag edges are semiconductor like because of the annihilation of the edge polaron by quasi-π bond formation between the nearest carbon atoms along the edges; graphenes with zigzag edges behave like metal because of the edge localized and polarized states in the mid-gap region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)

    ADS  Google Scholar 

  2. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Small-diameter silicon nanowire surfaces. Science 299(5614), 1874–1877 (2003)

    ADS  Google Scholar 

  3. Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, N.H. Tolk, Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials. Phys. Rev. B. 64(8), art. no.-085421 (2001)

    Google Scholar 

  4. S. Schuppler, S.L. Friedman, M.A. Marcus, D.L. Adler, Y.H. Xie, F.M. Ross, Y.J. Chabal, T.D. Harris, L.E. Brus, W.L. Brown, E.E. Chaban, P.F. Szajowski, S.B. Christman, P.H. Citrin, Size, shape, and composition of luminescent species in oxidized si nanocrystals and H-passivated porous Si. Phys. Rev. B 52(7), 4910–4925 (1995)

    ADS  Google Scholar 

  5. L. Heikkila, T. Kuusela, H.P. Hedman, Electroluminescence in Si/SiO2 layer structures. J. Appl. Phys. 89(4), 2179–2184 (2001)

    ADS  Google Scholar 

  6. B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J.R. Morante, C. Bonafos, Correlation between structural and optical properties of Si nanocrystals embedded in SiO2: The mechanism of visible light emission. Appl. Phys. Lett. 77(20), 3143–3145 (2000)

    ADS  Google Scholar 

  7. A. Tomasulo, M.V. Ramakrishna, Quantum confinement effects in semiconductor clusters. J. Chem. Phys. 105(9), 3612–3626 (1996)

    ADS  Google Scholar 

  8. S.C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, III-nitrides: growth, characterization, and properties. J. Appl. Phys. 87(3), 965–1006 (2000)

    ADS  Google Scholar 

  9. P. Ramvall, S. Tanaka, S. Nomura, P. Riblet, Y. Aoyagi, Observation of confinement-dependent exciton binding energy of GaN quantum dots. Appl. Phys. Lett. 73(8), 1104–1106 (1998)

    ADS  Google Scholar 

  10. A.A. Guzelian, U. Banin, A.V. Kadavanich, X. Peng, A.P. Alivisatos, Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 69(10), 1432–1434 (1996)

    ADS  Google Scholar 

  11. O.I. Micic, J. Sprague, Z.H. Lu, A.J. Nozik, Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 68(22), 3150–3152 (1996)

    ADS  Google Scholar 

  12. J.M. Ferreyra, C.R. Proetto, Quantum size effects on excitonic Coulomb and exchange energies in finite-barrier semiconductor quantum dots. Phys. Rev. B 60(15), 10672–10675 (1999)

    ADS  Google Scholar 

  13. Y. Wang, N. Herron, Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B 42(11), 7253–7255 (1990)

    ADS  Google Scholar 

  14. M.V.R. Krishna, R.A. Friesner, Exciton spectra of semiconductor clusters. Phys. Rev. Lett. 67(5), 629–632 (1991)

    ADS  Google Scholar 

  15. P.E. Lippens, M. Lannoo, Comparison between calculated and experimental values of the lowest excited electronic state of small CdSe crystallites. Phys. Rev. B 41(9), 6079–6081 (1990)

    ADS  Google Scholar 

  16. D.S. Chuu, C.M. Dai, Quantum size effects in CdS thin-films. Phys. Rev. B 45(20), 11805–11810 (1992)

    ADS  Google Scholar 

  17. V. Albe, C. Jouanin, D. Bertho, Confinement and shape effects on the optical spectra of small CdSe nanocrystals. Phys. Rev. B 58(8), 4713–4720 (1998)

    ADS  Google Scholar 

  18. M.G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carroll, T.M. Jedju, M.L. Steigerwald, L.E. Brus, Electronic-structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 65(13), 1623–1626 (1990)

    ADS  Google Scholar 

  19. S. Hayashi, H. Sanda, M. Agata, K. Yamamoto, Resonant Raman-scattering from ZnTe microcrystals—evidence for quantum size effects. Phys. Rev. B 40(8), 5544–5548 (1989)

    ADS  Google Scholar 

  20. C. Gourgon, L.S. Dang, H. Mariette, C. Vieu, F. Muller, Optical-properties of CdTe/CdZnTe wires and dots fabricated by a final anodic-oxidation etching. Appl. Phys. Lett. 66(13), 1635–1637 (1995)

    ADS  Google Scholar 

  21. M.F. Ng, R.Q. Zhang, Dimensionality dependence of optical properties and quantum confinement effects of hydrogenated silicon nanostructures. J. Phys. Chem. B 110(43), 21528–21535 (2006)

    Google Scholar 

  22. L. Cao, P. Fan, E.S. Barnard, A.M. Brown, M.L. Brongersma, Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010)

    ADS  Google Scholar 

  23. C.Q. Sun, L.K. Pan, Y.Q. Fu, B.K. Tay, S. Li, Size dependence of the 2p-level shift of nanosolid silicon. J. Phys. Chem. B 107(22), 5113–5115 (2003)

    Google Scholar 

  24. R. Tsu, D. Babic, L. Ioriatti, Simple model for the dielectric constant of nanoscale silicon particle. J. Appl. Phys. 82(3), 1327–1329 (1997)

    ADS  Google Scholar 

  25. C.Q. Sun, X.W. Sun, B.K. Tay, S.P. Lau, H.T. Huang, S. Li, Dielectric suppression and its effect on photoabsorption of nanometric semiconductors. J. Phys. D-Appl. Phys. 34(15), 2359–2362 (2001)

    ADS  Google Scholar 

  26. V. Petkov, C.M. Hessel, J. Ovtchinnikoff, A. Guillaussier, B.A. Korgel, X.F. Liu, C. Giordano, Structure-properties correlation in Si nanoparticles by total scattering and computer simulations. Chem. Mater. 25(11), 2365–2371 (2013)

    Google Scholar 

  27. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35(7), 583–592 (2006)

    Google Scholar 

  28. B. Wang, X.D. Xiao, X.X. Huang, P. Sheng, J.G. Hou, Single-electron tunneling study of two-dimensional gold clusters. Appl. Phys. Lett. 77(8), 1179–1181 (2000)

    ADS  Google Scholar 

  29. B. Wang, K.D. Wang, W. Lu, J.L. Yang, J.G. Hou, Size-dependent tunneling differential conductance spectra of crystalline Pd nanoparticles. Phys. Rev. B 70(20), 205411 (2004)

    ADS  Google Scholar 

  30. C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Google Scholar 

  31. L.K. Pan, C.Q. Sun, Coordination imperfection enhanced electron-phonon interaction. J. Appl. Phys. 95(7), 3819–3821 (2004)

    ADS  Google Scholar 

  32. L.K. Pan, Z. Sun, C.Q. Sun, Coordination imperfection enhanced electron-phonon interaction and band-gap expansion in Si and Ge nanocrystals. Scripta Mater. 60(12), 1105–1108 (2009)

    Google Scholar 

  33. A.L. Efros, Interband absorption of light in a semiconductor sphere. Sov. Phys. Semiconductors-USSR 16(7), 772–775 (1982)

    Google Scholar 

  34. A.I. Ekimov, A.A. Onushchenko, Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov. Phys. Semiconductors-USSR 16(7), 775–778 (1982)

    Google Scholar 

  35. L.E. Brus, On the development of bulk optical-properties in small semiconductor crystallites. J. Lumin. 31, 381–384 (1984)

    Google Scholar 

  36. Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38(14), 9797–9805 (1998)

    ADS  Google Scholar 

  37. M.L. Steigerwald, L.E. Brus, Semiconductor crystallites—a class of large molecules. Accounts Chem. Res. 23(6), 183–188 (1990)

    Google Scholar 

  38. L.W. Wang, A. Zunger, Dielectric-constants of silicon quantum dots. Phys. Rev. Lett. 73(7), 1039–1042 (1994)

    ADS  Google Scholar 

  39. G.G. Qin, H.Z. Song, B.R. Zhang, J. Lin, J.Q. Duan, G.Q. Yao, Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon. Phys. Rev. B 54(4), 2548–2555 (1996)

    ADS  Google Scholar 

  40. X.Y. Wang, L.H. Qu, J.Y. Zhang, X.G. Peng, M. Xiao, Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 3(8), 1103–1106 (2003)

    ADS  Google Scholar 

  41. E. Koch, V. Petrovakoch, T. Muschik, A. Nikolov, V. Gavrilenko, Some perspectives on the luminescence mechanism via surface-confined states of porous Si, in Microcrystalline Semiconductors: Materials Science & Devices, ed. by P.M. Fauchet, et al. (Materials Research Soc, Pittsburgh, 1993), pp. 197–202

    Google Scholar 

  42. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals. Chem. Eur. J. 8(1), 29–35 (2002)

    Google Scholar 

  43. H.N. Aiyer, V. Vijayakrishnan, G.N. Subbanna, C.N.R. Rao, Investigations of Pd clusters by the combined use of HREM, STM, high-energy spectroscopies and tunneling conductance measurements. Surf. Sci. 313(3), 392–398 (1994)

    ADS  Google Scholar 

  44. C.Q. Sun, T.P. Chen, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, L.K. Pan, S.P. Lau, X.W. Sun, An extended ‘quantum confinement’ theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. J. Phys. D-Appl. Phys. 34(24), 3470–3479 (2001)

    ADS  Google Scholar 

  45. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  46. C.Q. Sun, H.Q. Gong, P. Hing, H.T. Ye, Behind the quantum confinement and surface passivation of nanoclusters. Surf. Rev. Lett. 6(2), 171–176 (1999)

    Google Scholar 

  47. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  48. F.G. Shi, Size-dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9(5), 1307–1313 (1994)

    ADS  Google Scholar 

  49. Q. Jiang, Z. Zhang, J.C. Li, Superheating of nanocrystals embedded in matrix. Chem. Phys. Lett. 322(6), 549–552 (2000)

    ADS  Google Scholar 

  50. G.D. Sanders, Y.C. Chang, Theory of optical-properties of quantum wires in porous silicon. Phys. Rev. B 45(16), 9202–9213 (1992)

    ADS  Google Scholar 

  51. W. Theiss, in Scout Thin Film Analysis Software Handbook, Hard and Software, ed. by M. Theiss (Aachen, Germany) (www.mtheiss.com)

  52. S. Furukawa, T. Miyasato, Quantum size effects on the optical band-gap of microcrystalline Si-H. Phys. Rev. B 38(8), 5726–5729 (1988)

    ADS  Google Scholar 

  53. S. Guha, P. Steiner, W. Lang, Resonant Raman scattering and photoluminescence studies of porous silicon membranes. J. Appl. Phys. 79(11), 8664–8668 (1996)

    ADS  Google Scholar 

  54. L.K. Pan, C.Q. Sun, B.K. Tay, T.P. Chen, S. Li, Photoluminescence of Si nanosolids near the lower end of the size limit. J. Phys. Chem. B 106(45), 11725–11727 (2002)

    Google Scholar 

  55. S. Furukawa, T. Miyasato, Quantum size effects on the optical band-gap of microcrystalline Si-H. Phys. Rev. B 38(8), 5726–5729 (1988)

    ADS  Google Scholar 

  56. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, H. Mimura, Microstructure and optical-properties of freestanding porous silicon films—size dependence of absorption-spectra in Si nanometer-sized crystallites. Phys. Rev. B 48(4), 2827–2830 (1993)

    ADS  Google Scholar 

  57. J. von Behren, T. van Buuren, M. Zacharias, E.H. Chimowitz, P.M. Fauchet, Quantum confinement in nanoscale silicon: the correlation of size with bandgap and luminescence. Solid State Commun. 105(5), 317–322 (1998)

    ADS  Google Scholar 

  58. L. Canham, Properties of Porous Silicon: INSPEC1997, London

    Google Scholar 

  59. X. Wang, D.M. Huang, L. Ye, M. Yang, P.H. Hao, H.X. Fu, X.Y. Hou, X.D. Xie, Pinning of photoluminescence peak positions for light-emitting porous silicon—an evidence of quantum-size effect. Phys. Rev. Lett. 71(8), 1265–1267 (1993)

    ADS  Google Scholar 

  60. L. Dorigoni, O. Bisi, F. Bernardini, S. Ossicini, Electron states and luminescence transition in porous silicon. Phys. Rev. B 53(8), 4557–4564 (1996)

    ADS  Google Scholar 

  61. M.S. Hybertsen, M. Needels, 1st-principles analysis of electronic states in silicon nanoscale quantum wires. Phys. Rev. B 48(7), 4608–4611 (1993)

    ADS  Google Scholar 

  62. T. Ohno, K. Shiraishi, T. Ogawa, Intrinsic origin of visible-light emission from silicon quantum wires—electronic-structure and geometrically restricted exciton. Phys. Rev. Lett. 69(16), 2400–2403 (1992)

    ADS  Google Scholar 

  63. C.Y. Yeh, S.B. Zhang, A. Zunger, Confinement, surface, and chemisorption effects on the optical-properties of Si quantum wires. Phys. Rev. B 50(19), 14405–14415 (1994)

    ADS  Google Scholar 

  64. A.J. Read, R.J. Needs, K.J. Nash, L.T. Canham, P.D.J. Calcott, A. Qteish, 1st-principles calculations of the electronic-properties of silicon quantum wires. Phys. Rev. Lett. 69(8), 1232–1235 (1992)

    ADS  Google Scholar 

  65. L. Pavesi, G. Giebel, F. Ziglio, G. Mariotto, F. Priolo, S.U. Campisano, C. Spinella, Nanocrystal size modifications in porous silicon by preanodization ion-implantation. Appl. Phys. Lett. 65(17), 2182–2184 (1994)

    ADS  Google Scholar 

  66. I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman-spectra of crystalline semiconductors. Solid State Commun. 58(10), 739–741 (1986)

    ADS  Google Scholar 

  67. T. van Buuren, L.N. Dinh, L.L. Chase, W.J. Siekhaus, L.J. Terminello, Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys. Rev. Lett. 80(17), 3803–3806 (1998)

    ADS  Google Scholar 

  68. A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50(1), 1–208 (2001)

    ADS  Google Scholar 

  69. S. Hasegawa, M. Matsuda, Y. Kurata, Bonding configuration and defects in amorphous SiNx-H films. Appl. Phys. Lett. 58(7), 741–743 (1991)

    ADS  Google Scholar 

  70. M.L. Brongersma, A. Polman, K.S. Min, E. Boer, T. Tambo, H.A. Atwater, Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. Lett. 72(20), 2577–2579 (1998)

    ADS  Google Scholar 

  71. M. Nogami, S. Suzuki, K. Nagasaka, Sol-gel processing of small-sized CdSe crystal-doped silica glasses. J. Non-Cryst. Solids 135(2–3), 182–188 (1991)

    ADS  Google Scholar 

  72. M.G. Bawendi, P.J. Carroll, W.L. Wilson, L.E. Brus, Luminescence properties of CdSe quantum crystallites—resonance between interior and surface localized states. J. Chem. Phys. 96(2), 946–954 (1992)

    ADS  Google Scholar 

  73. J.E.B. Katari, V.L. Colvin, A.P. Alivisatos, X-Ray photoelectron-spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98(15), 4109–4117 (1994)

    Google Scholar 

  74. W. Hoheisel, V.L. Colvin, C.S. Johnson, A.P. Alivisatos, Threshold for quasi-continuum absorption and reduced luminescence efficiency in CdSe nanocrystals. J. Chem. Phys. 101(10), 8455–8460 (1994)

    ADS  Google Scholar 

  75. A.P. Alivisatos, T.D. Harris, L.E. Brus, A. Jayaraman, Resonance Raman-scattering and optical-absorption studies of CdSe microclusters at high-pressure. J. Chem. Phys. 89(10), 5979–5982 (1988)

    ADS  Google Scholar 

  76. O.I. Micic, H.M. Cheong, H. Fu, A. Zunger, J.R. Sprague, A. Mascarenhas, A.J. Nozik, Size-dependent spectroscopy of InP quantum dots. J. Phys. Chem. B 101(25), 4904–4912 (1997)

    Google Scholar 

  77. O.I. Micic, K.M. Jones, A. Cahill, A.J. Nozik, Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B 102(49), 9791–9796 (1998)

    Google Scholar 

  78. S. Sapra, R. Viswanatha, D.D. Sarma, An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes. J. Phys. D-Appl. Phys. 36(13), 1595–1598 (2003)

    ADS  Google Scholar 

  79. J.W. Li, S.Z. Ma, X.J. Liu, Z.F. Zhou, C.Q. Sun, ZnO meso-mechano-thermo physical chemistry. Chem. Rev. 112(5), 2833–2852 (2012)

    Google Scholar 

  80. D. Katz, T. Wizansky, O. Millo, E. Rothenberg, T. Mokari, U. Banin, Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys. Rev. Lett. 89(8), 086801 (2002)

    ADS  Google Scholar 

  81. R. Viswanatha, S. Sapra, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, Understanding the quantum size effects in ZnO nanocrystals. J. Mater. Chem. 14(4), 661–668 (2004)

    Google Scholar 

  82. K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, W.F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem. Phys. Lett. 409(4–6), 208–211 (2005)

    ADS  Google Scholar 

  83. E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 102(29), 5566–5572 (1998)

    Google Scholar 

  84. Y.H. Yang, X.Y. Chen, Y. Feng, G.W. Yang, Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire. Nano Lett. 7(12), 3879–3883 (2007)

    ADS  Google Scholar 

  85. H.L. Cao, X.F. Qian, Q. Gong, W.M. Du, X.D. Ma, Z.K. Zhu, Shape- and size- controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 17(15), 3632 (2006)

    ADS  Google Scholar 

  86. J.B. Li, L.W. Wang, Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B 72(12), 125325 (2005)

    ADS  Google Scholar 

  87. G.-C. Yi, C.R. Wang, W.I. Park, ZnO nanorods: synthesis, characterization and applications. Semiconductor. Sci. Technol. 20(4), S22 (2005)

    ADS  Google Scholar 

  88. K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61(16), 11093–11096 (2000)

    ADS  Google Scholar 

  89. W.T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energy Environ. Sci. 4(3), 627–655 (2011)

    Google Scholar 

  90. X. Zhang, Y.G. Nie, W.T. Zheng, J.L. Kuo, C.Q. Sun, Discriminative generation and hydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies. Carbon 49(11), 3615–3621 (2011)

    Google Scholar 

  91. D. Gunlycke, C.T. White, Tight-binding energy dispersions of armchair-edge graphene nanostrips. Phys. Rev. B 77, 115116 (2008)

    ADS  Google Scholar 

  92. Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)

    ADS  Google Scholar 

  93. M.Y. Han, B. Ozyilmaz, Y.B. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    ADS  Google Scholar 

  94. S.S. Yu, Q.B. Wen, W.T. Zheng, Q. Jiang, Electronic properties of graphene nanoribbons with armchair-shaped edges. Mol. Simul. 34(10–15), 1085–1090 (2008)

    Google Scholar 

  95. C.Q. Sun, S.Y. Fu, Y.G. Nie, Dominance of broken bonds and unpaired nonbonding pi-electrons in the band gap expansion and edge states generation in graphene nanoribbons. J Chem Phys C 112(48), 18927–18934 (2008)

    Google Scholar 

  96. Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)

    ADS  Google Scholar 

  97. X. Zhang, J.L. Kuo, M.X. Gu, P. Bai, C.Q. Sun, Graphene nanoribbon band-gap expansion: Broken-bond-induced edge strain and quantum entrapment. Nanoscale 2(10), 2160–2163 (2010)

    ADS  Google Scholar 

  98. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejo, Tight-binding description of graphene. Phys. Rev. B 66(3), 035412 (2002)

    ADS  Google Scholar 

  99. L. Liu, Z. Shen, Bandgap engineering of graphene: a density functional theory study. Appl. Phys. Lett. 95(25), 252103–252104 (2009)

    ADS  Google Scholar 

  100. Z.F. Wang, Q.X. Li, H.X. Zheng, H. Ren, H.B. Su, Q.W. Shi, J. Chen, Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Phys. Rev. B 75, 113406 (2007)

    ADS  Google Scholar 

  101. F. Zheng, K.I. Sasaki, R. Saito, W. Duan, B.L. Gu, Edge states of zigzag boron nitride nanoribbons. J. Phys. Soc. Jpn. 78(7), 074713 (2009)

    ADS  Google Scholar 

  102. I. Zanella, S. Guerini, S.B. Fagan, J. Mendes, A.G. Souza, Chemical doping-induced gap opening and spin polarization in graphene. Phys. Rev. B 77, 073404 (2008)

    ADS  Google Scholar 

  103. E. Rotenberg, A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, K. Horn, Origin of the energy bandgap in epitaxial graphene. Nat. Mater. 7(4), 258–259 (2008)

    ADS  Google Scholar 

  104. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, F. El Gabaly, A.K. Schmid, A.H.C. Neto, D.H. Lee, A. Lanzara, Origin of the energy bandgap in epitaxial graphene—reply. Nat. Mater. 7(4), 259–260 (2008)

    ADS  Google Scholar 

  105. S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. De Heer, D.H. Lee, F. Guinea, A.H.C. Neto, A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6(10), 770–775 (2007)

    ADS  Google Scholar 

  106. T. Enoki, Y. Kobayashi, K.I. Fukui, Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 26(4), 609–645 (2007)

    Google Scholar 

  107. D. Finkenstadt, G. Pennington, M.J. Mehl, From graphene to graphite: a general tight-binding approach for nanoribbon carrier transport. Phys. Rev. B 76(12), 121405 (2007)

    ADS  Google Scholar 

  108. D. Gunlycke, D.A. Areshkin, C.T. White, Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104 (2007)

    ADS  Google Scholar 

  109. T.C. Li, S.P. Lu, Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 77(8), 085408 (2008)

    ADS  Google Scholar 

  110. B. Zheng, P. Hermet, L. Henrard, Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes. ACS Nano 4(7), 4165–4173 (2010)

    Google Scholar 

  111. S.S. Yu, W.T. Zheng, Q.B. Wen, Q. Jiang, First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon 46(3), 537–543 (2008)

    Google Scholar 

  112. S.S. Yu, W.T. Zheng, Q. Jiang, Oxidation of graphene nanoribbon by molecular oxygen. IEEE Trans. Nanotechnol. 7(5), 628–635 (2008)

    ADS  Google Scholar 

  113. D. Gunlycke, J. Li, J.W. Mintmire, C.T. White, Edges bring new dimension to graphene nanoribbons. Nano Lett. 10(9), 3638–3642 (2010)

    ADS  Google Scholar 

  114. Y. Ren, K.Q. Chen, Effects of symmetry and Stone-Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J. Appl. Phys. 107(4), 044514 (2010)

    ADS  Google Scholar 

  115. Y. Ren, K.Q. Chen, Q. Wan, B.S. Zou, Y. Zhang, Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices. Appl. Phys. Lett. 94(18), 183506 (2009)

    ADS  Google Scholar 

  116. Y.E. Xie, Y.P. Chen, J.X. Zhong, Electron transport of folded graphene nanoribbons. J. Appl. Phys. 106(10), 103714 (2009)

    ADS  Google Scholar 

  117. C.Q. Sun, Y. Sun, Y.G. Nie, Y. Wang, J.S. Pan, G. Ouyang, L.K. Pan, Z. Sun, Coordination-resolved C–C bond length and the C 1s binding energy of carbon allotropes and the effective atomic coordination of the few-layer graphene. J. Chem. Phys. C 113(37), 16464–16467 (2009)

    Google Scholar 

  118. V. Barone, O. Hod, G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Bandgap Expansion: Photon Emission and Absorption. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_17

Download citation

Publish with us

Policies and ethics