Skip to main content

Principles of Green Chemistry

  • Chapter
  • First Online:

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Green chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability. The field has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously. Green chemistry has a framework of a cohesive set of twelve principles, which have been systematically surveyed in this critical review. This chapter covers the concepts of design and the scientific philosophy of green chemistry with a set of illustrative examples. Future trends in green chemistry are discussed with the challenge of using the principles as a cohesive design system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leitner W, Jessop PG, Li CJ (2010) Handbook of green chemistry e green solvents. Wiley-VCH, Weinhheim

    Google Scholar 

  2. World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford, United Kingdom

    Google Scholar 

  3. Anastas PT, Williamson TC (1996) Green chemistry: an overview. ACS Symp Ser 626:1–17

    Article  CAS  Google Scholar 

  4. Tang S, Bourne R, Smith R et al (2008) The 24 principles of green engineering and green chemistry: improvements productively. Green Chem 10:268–269

    Article  CAS  Google Scholar 

  5. Sheldon RA (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem 19:18–43

    Article  CAS  Google Scholar 

  6. Akadiri PO, Chinyio EA, Olomolaiye PO (2012) Design of a sustainable building: a conceptual framework for implementing sustainability in the building sector. Buildings 2:126–152

    Article  Google Scholar 

  7. Abdel-Shafy HI, Mansour MS (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egyptian J Petrol 27(4):1275–1290

    Article  Google Scholar 

  8. Elbeshbishy E, Okoye F (2019) Improper Disposal of Household Hazardous Waste: Landfill/Municipal Wastewater Treatment Plant. Intech Open

    Google Scholar 

  9. Marion P, Bernela B, Piccirilli A et al (2017) Sustainable chemistry: how to produce better and more from less? Green Chem 19:4973–4989

    Article  CAS  Google Scholar 

  10. Mulvihill MJ, Beach ES, Zimmerman JB et al (2011) Green chemistry and green engineering: a framework for sustainable technology development. Annu Rev Environ Resour 36:271–293

    Article  Google Scholar 

  11. Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72(7):1233–1246

    Article  CAS  Google Scholar 

  12. Eynde JJV (2016) How efficient is my (medicinal) chemistry? Pharmaceuticals (Basel) 9(2):26

    Google Scholar 

  13. Winterton N (2016) Green chemistry: deliverance or distraction? Clean Techn Environ Policy 18:991–1001

    Article  Google Scholar 

  14. Patel KR, Sen DJ, Jatakiya VP (2013) Atom economy in drug synthesis is a playground of functional groups. Am J Adv Drug Del 1:73–83

    Google Scholar 

  15. Török B, Dransfield T (2018) Green chemistry: historical perspectives and basic concepts. In: Green Chemistry, p 8

    Google Scholar 

  16. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  Google Scholar 

  17. Cherrie JW, Semple S, Christopher Y et al (2006) How important is inadvertent ingestion of hazardous substances at work? Ann Occup Hygiene 50(7):693–704

    CAS  Google Scholar 

  18. Ganesan K, Raza SK, Vijayaraghavan R (2010) Chemical warfare agents. J Pharm Bioallied Sci 2(3):166–178

    Article  CAS  Google Scholar 

  19. Curzons AD, Constable DJC, Mortimer DN et al (2001) So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—a corporate perspective. Green Chem 3:1–6

    Article  CAS  Google Scholar 

  20. Marco BA, Rechelo BS, Tótoli EG et al (2019) Evolution of green chemistry and its multidimensional impacts: a review. Saudi Pharmaceut J 27(1):1–8

    Article  Google Scholar 

  21. Serini V (2000) Polycarbonates in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  22. Kim WB, Joshi UA, Lee JS (2004) Making polycarbonates without employing phosgene: an overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate. Ind Eng Chem Res 43(9):1897–1914

    Article  CAS  Google Scholar 

  23. Fukuoka SJ, Patent 4-257646 A1 (Sep. 11, 1992); 7-91237 B1 (Oct. 4, 1995), assigned to Asahi Kasei Chemicals Corp

    Google Scholar 

  24. Komiya K, Fukuoka S, Aminaka M et al (1996) New process for producing polycarbonate without phosgene and methylene chloride. Green Chem Des Chem Environ 26:20–32

    Article  CAS  Google Scholar 

  25. Hansson SO, Molander L, Ruden C (2011) The substitution principle. Regul Toxicol Pharmacol 59:454–460

    Article  Google Scholar 

  26. Vallamkondu J, Corgiat EB, Buchaiah G et al (2018) Liquid crystals: a novel approach for cancer detection and treatment. Cancers 10(11):462–482

    Article  CAS  Google Scholar 

  27. Dichiarante V, Ravelli D, Albini A (2010) Green chemistry: state of the art through an analysis of the literature. Green Chem Lett Rev 3:105–113

    Article  CAS  Google Scholar 

  28. Trost BM (1991) The atom economya search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  29. Zhu J, Bienayme H (2005) Multicomponent reactions. Wiley-VCH Verlag, GmbH & Co

    Google Scholar 

  30. Murai S (1999) activation of unreactive bonds and organic synthesis, topics in organometallic chemistry (vol 3). Springer, Berlin Heidelberg

    Google Scholar 

  31. Grubbs RH (2004) Olefin Metathesis. Tetrahedron 60:7117–7140

    Article  CAS  Google Scholar 

  32. Silverman RB (2002) The organic chemistry of enzyme-catalyzed reactions. In: Bommarius AS, Riebel BR (eds) Biocatalysis, Academic Press, New York. Wiley-VCH Verlag GmbH & Co KGaA

    Google Scholar 

  33. Rani B, Maheshwari R, Chauhan AK et al (2012) Potentiality of green chemistry for future perspectives. Int J Pharm Chem Sci 1(1):97–194

    Google Scholar 

  34. Crawford SE, Hartung T, Hollert H et al (2017) Green toxicology: a strategy for sustainable chemical and material development. Environ Sci Eur 29(1):16

    Article  CAS  Google Scholar 

  35. Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 1(53):86–168

    Article  CAS  Google Scholar 

  36. Welton T (2015) Solvents and sustainable chemistry. Proc R Soc 471(2183):20150502

    Article  Google Scholar 

  37. Clarke CJ, Tu WC, Levers O et al (2018) Green and sustainable solvents in chemical processes. Chem Rev 118(2):747–800

    Article  CAS  Google Scholar 

  38. Yang GP, Wu X, Yu B et al (2019) Ionic liquid from vitamin B1 analogue and heteropolyacid: a recyclable heterogeneous catalyst for dehydrative coupling in organic carbonate. ACS Sustain Chem Eng 7(4):3727–3732

    Article  CAS  Google Scholar 

  39. Giorgianni G, Abate S, Centi G et al (2018) Effect of the solvent in enhancing the selectivity to furan derivatives in the catalytic hydrogenation of furfural. ACS Sustain Chem Eng 6(12):16235–16247

    Article  CAS  Google Scholar 

  40. Coskun O (2016) Separation techniques: chromatography. North Clin Istanb 3(2):156–160

    Google Scholar 

  41. Himaja M, Poppy D, Asif K (2011) Green technique-solvent free synthesis and its advantages. Int J Res Ayurv Pharm 2(4):1079–1086

    CAS  Google Scholar 

  42. Cornils B, Herrmann WA (eds) (1998) Aqueous phase organometallic catalysis—concepts and applications. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  43. Samorì C, Basaglia M, Casella S et al (2015) Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem 17(2):1047–1056

    Article  CAS  Google Scholar 

  44. Reinhardt D, Ilgen F, Kralisch D et al (2008) Evaluating the greenness of alternative reaction media. Green Chem 10:1170–1181

    Article  CAS  Google Scholar 

  45. Breslow R, Anastas PT, Williamson TC (1998) Green Chem. Oxford University Press, New York p, p 225

    Google Scholar 

  46. Khaw KY, Parat MO, Shaw PN et al (2017) Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: a review. Molecules 22(7):1186–1207

    Article  CAS  Google Scholar 

  47. Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895

    Article  CAS  Google Scholar 

  48. Nautiyal OH (2016) Food processing by supercritical carbon dioxide-review. EC Chem 2(1):111–135

    Google Scholar 

  49. Darani KK, Farahani VE (2005) Application of supercritical fluid extraction in biotechnology. Crit Rev Biotechnol 25(4):1–12

    Google Scholar 

  50. De Simone JM, Guan Z, Elsbernd CS (1992) Synthesis of fluoropolymers in supercritical carbon dioxide. Science 257(5072):945–947

    Article  Google Scholar 

  51. Jessop PG, Hsiao Y, Ikariya T et al (1994) Catalytic production of dimethylformamide from supercritical carbon dioxide. J Am Chem Soc 116(19):8851–8852

    Article  CAS  Google Scholar 

  52. Herron JA, Kim J, Upadhye AA (2015) A general framework for the assessment of solar fuel technologies. Energy Environ Sci 8:126–157

    Article  CAS  Google Scholar 

  53. Gao J, Ma S, Major DT (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106(8):3188–3209

    Article  CAS  Google Scholar 

  54. Frank L (1996) Loss prevention in the process industries, vol 3, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  55. Barton‏ J, Rogers R (1997) Chemical reaction hazards: a guide to safety (2nd edn). Institution of Chemical Engineers, Davis Building, Rugby, Warwickshire UK

    Google Scholar 

  56. Alalwan HA, Alminshid AH, Aljaafari HAS (2019) Promising evolution of biofuel generations. Subject Rev Renew Energy Focus 28:127–139

    Article  Google Scholar 

  57. Vasconcelos BR, Lavoie JM (2019) Recent advances in power-to-X technology for the production of fuels and chemicals. Front Chem 7:392

    Article  CAS  Google Scholar 

  58. Miller RG, Sorrell SR (2014) The future of oil supply. Phil Trans R Soc A 372:20130179

    Article  Google Scholar 

  59. Kotcher J, Maibach E, Choi WT (2019) Fossil fuels are harming our brains: identifying key messages about the health effects of air pollution from fossil fuels. BMC Public Health 19(1):1079

    Article  Google Scholar 

  60. Rai PK, Lee S, Zhang M (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  Google Scholar 

  61. Peterson‏ EA, Manley‏ JB (2015) Green chemistry strategies for drug discovery. Royal Soc Chemi UK. RSC Drug Disc Ser 46:19

    Google Scholar 

  62. Manahan SE (2006) Green chemistry and the ten commandments of sustainability (2nd edn) Chem Char Research, Inc Publishers Columbia, Missouri U.S.A pp 183

    Google Scholar 

  63. Kalz KF, Kraehnert R, Dvoyashkin M et al (2017) Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. Chem Cat Chem 9(1):17–29

    CAS  Google Scholar 

  64. Davis HJ, Phipps RJ (2017) Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem Sci 8:864–877

    Article  CAS  Google Scholar 

  65. Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5(1):145–269

    Article  CAS  Google Scholar 

  66. Emam EA (2013) Clays as catalysts in petroleum refining industry. J Sci Tech 3(4):356–375

    Google Scholar 

  67. Eriksen M, Thiel M, Prindiville M et al (2017) Microplastic: what are the solutions? Freshwater microplastics part of the handbook of environmental chemistry, Springer, pp 273–298

    Google Scholar 

  68. Hammer J, Kraak MH, Parsons JR (2012) Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam Toxicol 220:1–44

    CAS  Google Scholar 

  69. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    Article  CAS  Google Scholar 

  70. Jordan A, Gathergood N (2013) Designing safer and greener antibiotics. Antibiotics 2(3):419–438

    Article  CAS  Google Scholar 

  71. Ivanković A, Dronjić A, Bevanda AM et al (2017) Review of 12 principles of green chemistry in practice. Int J Sustain Green Energy 6(3):39–48

    Article  CAS  Google Scholar 

  72. Riđanović L, Ćatović F, Riđanović S The green chemistry-ecological revolution in the classroom. In: 8th research/expert conference with international participations “QUALITY 2013”, Neum, B&H, June 06–08, pp 447–452. In Bosnian

    Google Scholar 

  73. Bharadwaj M, Neelam M (2015) The advantages and disadvantages of green technology. J Basic Appl Eng Res 2(22):1957–1960

    Google Scholar 

  74. Collins TJ (2017) Review of the twenty-three-year evolution of the first university course in green chemistry: teaching future leaders how to create sustainable societies. J Clean Prod 140:93–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam M. Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, A.I., Saleh, H.M. (2021). Principles of Green Chemistry. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_2

Download citation

Publish with us

Policies and ethics