Skip to main content

Atom Economic Green Organic Reactions

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

Atom economic reactions were able to capture much recognition and curiosity mainly in fields related to synthetic organic chemistry, total synthesis and pharmaceutical chemistry. Reduced toxicity, least waste generation and minimal raw material usage were the major reasons which always motivated the scientists towards achieving a greener and sustainable environment. In this regard, the second principle among the twelve principles of green chemistry plays a vital role. Addition and rearrangement, isomerizations, catalyst-free, solvent-free and pericyclic reactions are found to render high atom economy. Ionic liquid and water-mediated reactions also showcase their efficiency in being highly atom economic. Among these, some major atom economical reactions, its chemical peculiarities and their effectiveness are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trost BM (1995) Atom economy—a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed Engl 34(3):259–281

    Article  CAS  Google Scholar 

  2. Li C-J, Trost BM (2008) Green chemistry for chemical synthesis. Proc Natl Acad Sci 105(36):13197–13202

    Article  CAS  Google Scholar 

  3. Trost BM (1991) The atom economy–a search for synthetic efficiency. Science 254(5037):1471–1477

    Article  CAS  Google Scholar 

  4. Jiménez-González C, Constable DJC, Ponder CS (2012) Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry—a green metrics primer. Chem Soc Rev 41(4):1485–1498

    Article  Google Scholar 

  5. Clarke PA, Santosa S, Martin WHC (2007) Combining pot, atom and step economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chem 9(5):438–440

    Article  CAS  Google Scholar 

  6. Bai L-G, Zhou Y, Zhuang X et al (2020) Base-promoted aerobic oxidation of N-alkyl iminium salts derived from isoquinolines and related heterocycles. Green Chem 22(1):197–203

    Article  CAS  Google Scholar 

  7. Mohamadpour F (2019) Four-component synthesis of Dihydropyrano[2,3-c]pyrazole scaffolds using glycerol as green reaction media under catalyst-free conditions. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2019.1709084

    Article  Google Scholar 

  8. Zhao L-Q, Zhou B, Li Y-Q (2011) An efficient one-pot three-component reaction for synthesis of spirooxindole derivatives in water media under catalyst-free condition. Heteroat Chem 22(5):673–677

    Article  CAS  Google Scholar 

  9. Elinson MN, Ilovaisky AI, Merkulova VM et al (2012) Non-catalytic thermal multicomponent assembling of Isatin, cyclic CH-acids and Malononitrile: an efficient approach to Spirooxindole scaffold. Mendeleev Commun 22(3):143–144

    Article  CAS  Google Scholar 

  10. Németh AG, Keserű GM, Ábrányi-Balogh P (2019) A novel three-component reaction between isocyanides, alcohols or thiols and elemental sulfur: a mild, catalyst-free approach towards O-thiocarbamates and dithiocarbamates. Beilstein J Org Chem 15:1523–1533

    Article  CAS  Google Scholar 

  11. Dong Y, Zhang H, Yang J et al (2019) B(C6F5)3-catalyzed C−C coupling of 1,4-Naphthoquinones with the C-3 position of Indole derivatives in water. ACS Omega 4(25):21567–21577

    Article  CAS  Google Scholar 

  12. Chate AV, Shaikh BA, Bondle GM, Sangle SM (2019) Efficient atom-economic one-pot multicomponent synthesis of benzylpyrazolyl coumarins and novel pyrano[2,3-c]pyrazoles catalysed by 2-aminoethanesulfonic acid (taurine) as a bio-organic catalyst. Synth Commun 49(17):2244–2257

    Article  CAS  Google Scholar 

  13. Arbad BR, Khillare SL, Lande MK et al (2017) Synthesis, characterization and catalytic application of V2O5/Fe3O4 as heterogeneous catalyst for the synthesis of Quinoline-4-carboxylic acid derivatives. Der Pharma Chemica 9(6):30–36

    Google Scholar 

  14. Karamthulla S, Pal S, Choudhury LH et al (2013) Synthesis of novel spiro[indoline-3,7′-pyrrolo[1,2-c]imidazole]-6′-carbonitrile derivatives in water using a regioselective sequential three component reaction. RSC Adv 3(36):15576–15581

    Article  CAS  Google Scholar 

  15. Chai S-J, Lai Y-F, Xu J-C et al (2011) One-pot synthesis of Spirooxindole derivatives catalyzed by Lipase in the presence of water. Adv Synth Catal 353(2–3):371–375

    Article  CAS  Google Scholar 

  16. Chen M, Luo Y, Zhang C et al (2019) Graphene oxide mediated thiolation of indoles in water: a green and sustainable approach to synthesize 3-sulfenylindoles. Org Chem Front 6(1):116–120

    Article  CAS  Google Scholar 

  17. Nasr-Esfahani M, Mohammadpoor-Baltork I, Khosropour AR et al (2014) Copper immobilized on nanosilica triazine dendrimer (Cu(II)-TD@nSiO2)-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles and bis- and tris-triazoles via a one-pot multicomponent click reaction. J Org Chem 79(3):1437–1443

    Article  CAS  Google Scholar 

  18. Natarajan P, Priya CD (2017) Transition-metal-free and organic solvent-free conversion of N-substituted 2-aminobiaryls into corresponding carbazoles via intramolecular oxidative radical cyclization induced by peroxodisulfate. Green Chem 19(24):5854–5861

    Article  CAS  Google Scholar 

  19. Brahmachari G, Begam S (2019) Ceric ammonium nitrate (CAN): an efficient and eco-friendly catalyst for one-pot synthesis of diversely functionalized biscoumarins in aqueous medium under ambient conditions. ChemistrySelect 4(19):5415–5420

    Article  CAS  Google Scholar 

  20. Jiang S, Cao Z, He W-M et al (2019) Clean preparation of Quinolin-2-yl substituted ureas in water. ACS Sustain Chem Eng 7(7):7193–7199

    Article  CAS  Google Scholar 

  21. Yellappa S (2019) An anti-Michael route for the synthesis of indole-spiro(indene-pyrrolidine) by 1,3-cycloaddition of azomethineylide with indole-derivatised olefins. J Heterocycl Chem. https://doi.org/10.1002/jhet.3843

    Article  Google Scholar 

  22. Liu X, Feng X, Chen Z et al (2013) Asymmetric synthesis of trans-β-Lactams by a Kinugasa reaction on water. Chem Eur J 19(23):7561–7567

    Article  CAS  Google Scholar 

  23. Dandia A, Parewa V, Kumar S et al (2016) Imposed hydrophobic interactions by NaCl: accountable attribute for the synthesis of spiro[acenaphthylene-1,5′-pyrrolo[1,2-c]thiazole] derivatives via 1,3-dipolar cycloaddition reaction in aqueous medium. Green Chem 18(8):2488–2499

    Article  CAS  Google Scholar 

  24. Shao Y, Tong J, Zhao Y et al (2016) [3 + 2] cycloaddition and subsequent oxidative dehydrogenation between alkenes and diazo compounds: a simple and direct approach to pyrazoles using TBAI/TBHP. Org Biomol Chem 14(36):8486–8492

    Article  CAS  Google Scholar 

  25. Alagarsamy V, Chitra K, Saravanan G (2018) An overview of quinazolines: pharmacological significance and recent developments. Eur J Med Chem 151:628–685

    Article  CAS  Google Scholar 

  26. Mullasseril A (2013) Substituent effects on solvent-free synthesis (MWAOS) of dihydroquinazolinones by the addition of isatoic anhydride to a series of phenyl-substituted n-(phenylmethylidene) anilines. J Chem 2013:1–4

    Article  CAS  Google Scholar 

  27. Xiao Y, Su G-F, Mo D-L et al (2019) Nickel(II)-catalyzed [5 + 1] annulation of 2-carbonyl-1-propargylindoles with hydroxylamine to synthesize pyrazino[1,2-a]indole-2-oxides in water. J Org Chem 84(16):9859–9868

    Article  CAS  Google Scholar 

  28. De M, Girish YR, Pandit S et al (2017) Graphene oxide as a carbo-catalyst for Diels-Alder reaction in aqueous media. Chem Asian J 12(18):2393–2398

    Article  CAS  Google Scholar 

  29. Singh J, Singh J, Tufail F et al (2017) Bioorganopromoted green friedländer: a versatile new Malic acid promoted solvent free approach to multisubstituted quinolones. New J Chem 41(4):1618–1624

    Article  CAS  Google Scholar 

  30. Pinxterhuis EB, Giannerini M, Hornillos V et al (2016) Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nat Commun 7:11698

    Article  CAS  Google Scholar 

  31. Yan K, Yang D, Wang H et al (2015) Facile access to benzothiophenes through metal-free iodine-catalyzed intermolecular cyclization of thiophenols and alkynes. Synlett 26(13):1890–1894

    Article  CAS  Google Scholar 

  32. Khan MM, Shareef S, Saigala et al (2019) A catalyst- and solvent-free protocol for the sustainable synthesis of fused 4H-pyran derivatives. RSC Adv 9(45):26393–26401

    Article  CAS  Google Scholar 

  33. Mirjalili BBF, Bamoniri A, Salmanpoor LA (2018) TiCl2/Nano-γ-Al2O3 as a novel Lewis acid catalyst for promotion of one-pot synthesis of 1,4-dihydropyridines. J Nanostruct 8(3):276–287

    CAS  Google Scholar 

  34. Tayebee R, Nehzat F, Rafiee E et al (2011) An efficient and green synthetic protocol for the preparation of bis(indolyl)methanes catalyzed by H6P2W18O62·24H2O, with emphasis on the catalytic proficiency of Wells-Dawson versus Keggin heteropolyacids. J Mol Catal A-Chem 351:154–164

    Article  CAS  Google Scholar 

  35. Sakhalkar M, Aduri P, Lande S, Chandra S (2020) Single-step synthesis of novel chloroaluminate ionic liquid for green Friedel-Crafts alkylation reaction. Clean Techn Environ Policy 22:59–71

    Article  CAS  Google Scholar 

  36. Hu Y-L, Li D-J, Li D-S (2015) Efficient and convenient oxidation of aldehydes and ketones to carboxylic acids and esters with H2O2 catalyzed by Co4HP2Mo15V3O62 in ionic liquid [TEBSA][BF4]. RSC Adv 5(32):24936–24943

    Article  CAS  Google Scholar 

  37. Nimbalkar UD, Seijas JA, Nikalje APG et al (2017) Ionic liquid-catalyzed green protocol for multi-component synthesis of dihydropyrano[2,3-c]pyrazoles as potential anticancer scaffolds. Molecules 22(10):1628–1644

    Article  CAS  Google Scholar 

  38. Li M, Abdolmohammadi S, Vessally E et al (2020) Carboxylative cyclization of propargylic alcohols with carbon dioxide: A facile and Green route to α-methylene cyclic carbonates. J CO2 Util 38:220–231

    Article  CAS  Google Scholar 

  39. Parvatkar PT, Manetsch R, Banik BK (2019) Metal-Free cross-dehydrogenative coupling (CDC): molecular iodine as a versatile catalyst/reagent for CDC reactions. Chem Asian J 14(1):6–30

    Article  CAS  Google Scholar 

  40. Itoh A, Tada N, Usami K et al (2016) Intermolecular cyclopropanation of styrenes using iodine and visible light via carbon-iodine bond cleavage. Org Lett 18(1):8–11

    Article  CAS  Google Scholar 

  41. Devari S, Kumar A, Shah BA et al (2015) C-H functionalization of terminal alkynes towards stereospecific synthesis of (E) or (Z) 2-methylthio1,4-ene-diones. Chem Commun 51(24):5013–5016

    Article  CAS  Google Scholar 

  42. Tehri P, Aegurula B, Peddinti RK (2017) Iodine-catalysed regioselective synthesis of β-hydroxysulfides. Tetrahedron Lett 58(21):2062–2065

    Article  CAS  Google Scholar 

  43. Hiebel M-A, Berteina-Raboin S (2015) Iodine-catalyzed regioselective sulfenylation of imidazoheterocycles in PEG400. Green Chem 17(2):937–944

    Article  CAS  Google Scholar 

  44. Sun K, Lv Y, Wang X et al (2017) A novel metal-free method for the selenocyanation of aromatic ketones to afford α-carbonyl selenocyanates. Org Biomol Chem 15(20):4464–4467

    Article  CAS  Google Scholar 

  45. Vadagaonkara KS, Prakashb S, Chaskar CA et al (2015) Iodine-mediated domino protocol for the synthesis of benzamides from ethylarenes via sp3 C–H functionalization. Synlett 26(12):1677–1682

    Article  CAS  Google Scholar 

  46. Qiu R, Au C-T, Yin S-F et al (2017) Intramolecular, site-selective, iodine-mediated, amination of unactivated (sp3)C−H bonds for the synthesis of indoline derivatives. Org Lett 19(11):2793–2796

    Article  CAS  Google Scholar 

  47. Gao X, Gao M, Lei A et al (2015) Iodine-catalyzed radical oxidative annulation for the construction of dihydrofurans and indolizines. Org Lett 17(10):2404–2407

    Article  CAS  Google Scholar 

  48. Zhang H, Muñiz K (2017) Selective piperidine synthesis exploiting iodine-catalyzed Csp3-H amination under visible light. ACS Catal 7(6):4122–4125

    Article  CAS  Google Scholar 

  49. Zhang J, Yu C, Wang Z (2010) A simple and efficient approach to the synthesis of 2-Phenylquinazolines via sp3 C–H functionalization. Org Lett 12(12):2841–2843

    Article  CAS  Google Scholar 

  50. Garai M, Rozyyev V, Ullah Z (2019) Zwitterion π–conjugated network polymer based on guanidinium and β-ketoenol as a heterogeneous organo-catalyst for chemical fixation of CO2 into cyclic carbonates. APL Mater 7:111102–111109

    Article  CAS  Google Scholar 

  51. Sharma AK, Singh J, Singh J et al (2019) Rose Bengal catalyzed coupling of 1,2-dicarbonyls and phenylene 1, 2-diamines: visible-light mediated synthesis of quinoxalines. ChemistrySelect 4(29):8713–8718

    Article  CAS  Google Scholar 

  52. Zhu T, Yu Q, Ding L (2019) Atom-economical Preparation of polybismaleimide-based microporous organic polymers. Green Chem 21(9):2326–2333

    Article  CAS  Google Scholar 

  53. Ji X-M, Zhou S-J, Deng C-L et al (2014) NH4PF6-promoted cyclodehydration of a-amino carbonyl compounds: efficient synthesis of pyrrolo-[3,2,1-ij]quinoline and indole derivatives. RSC Adv 4(96):53837–53841

    Article  CAS  Google Scholar 

  54. Pradhan S, Mishra K, Lee YR (2019) Support-free Pd3CO NCs as an efficient heterogeneous nanocatalyst for new organic transformations of C–C coupling reactions. Chem Eur J 25(46):10886–10894

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MN and SR thank the Kerala State Council for Science Technology and Environment (KSCSTE), Trivandrum research fellowships. GA thanks the KSCSTE, Trivandrum, India for a research grant (Order No.341/2013/KSCSTE dated 15.03.2013). The authors are also thankful to EVONIK Industries, Germany for financial support (ECRP 2016 dated 6.10.2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinathan Anilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neetha, M., Radhika, S., Anilkumar, G. (2021). Atom Economic Green Organic Reactions. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_12

Download citation

Publish with us

Policies and ethics