Skip to main content

Electroluminescence Devices with Colloidal Quantum Dots

  • Chapter
  • First Online:
Advanced Display Technology

Part of the book series: Series in Display Science and Technology ((SDST))

Abstract

Colloidal quantum dots (QDs) are a few nanometer-sized semiconductor nanocrystals whose electronic states are subject to change depending on their dimension. QDs have been of great interest as light-emitting materials in future displays owing to their superb optical properties such as near-unity photoluminescence quantum yield and narrow emission spectra, as well as their solution processability. The present chapter focuses on the emerging display technologies based on quantum dots. Specifically, this chapter covers the brief introduction of quantum dots for light-emitting applications, photophysical properties of quantum dots relevant to light-emitting applications, and the state-of-the-art of, and the perspectives on QD-based display technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354–357 (1994)

    Article  Google Scholar 

  2. S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917), 800–803 (2002)

    Article  Google Scholar 

  3. A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, V.I. Klimov, Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5(6), 1039–1044 (2005)

    Article  Google Scholar 

  4. J. Kwak, W.K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12(5), 2362–2366 (2012)

    Article  Google Scholar 

  5. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014)

    Article  Google Scholar 

  6. W.K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, S. Lee, R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv. Mater. 26(37), 6387–6393 (2014)

    Article  Google Scholar 

  7. J.M. Pietryga, Y.-S. Park, J. Lim, A.F. Fidler, W.K. Bae, S. Brovelli, V.I. Klimov, Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116(18), 10513–10622 (2016)

    Article  Google Scholar 

  8. H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 13(3), 192–197 (2019)

    Article  Google Scholar 

  9. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 22(28), 3076–3080 (2010)

    Article  Google Scholar 

  10. H. Chen, J. He, S.-T. Wu, Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE J. Sel. Top. Quantum Electron. 23(5), 1–11 (2017)

    Article  Google Scholar 

  11. J.S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, S. Coe-Sullivan, Quantum dots: the ultimate down-conversion material for LCD displays. J. Soc. Inf. Disp. 23(7), 294–305 (2015)

    Article  Google Scholar 

  12. M.K. Choi, J. Yang, T. Hyeon, D.-H. Kim, Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron. 2(1), 1–14 (2018)

    Google Scholar 

  13. X. Dai, Y. Deng, X. Peng, Y. Jin, Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv. Mater. 29(14), 1607022 (2017)

    Article  Google Scholar 

  14. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110(1), 389–458 (2010)

    Article  Google Scholar 

  15. Z. Chen, B. Nadal, B. Mahler, H. Aubin, B. Dubertret, Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 24(3), 295–302 (2014)

    Article  Google Scholar 

  16. D. Hahm, J. Park, I. Jeong, S. Rhee, T. Lee, C. Lee, S. Chung, W. Bae, S. Lee, Surface engineered colloidal quantum dots for complete green process. ACS Appl. Mater. Interfaces 12(9), 10563 (2020)

    Article  Google Scholar 

  17. Y. Jiang, S.-Y. Cho, M. Shim, Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. J. Mater. Chem. C 6(11), 2618–2634 (2018)

    Article  Google Scholar 

  18. H.M. Haverinen, R.A. Myllylä, G.E. Jabbour, Inkjet printing of light emitting quantum dots. Appl. Phys. Lett. 94(7), 073108 (2009)

    Article  Google Scholar 

  19. J. Han, D. Ko, M. Park, J. Roh, H. Jung, Y. Lee, Y. Kwon, J. Sohn, W.K. Bae, B.D. Chin, Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays. J. Soc. Inf. Disp. 24(9), 545–551 (2016)

    Article  Google Scholar 

  20. J. Song, O. Wang, H. Shen, Q. Lin, Z. Li, L. Wang, X. Zhang, L.S. Li, Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29(33), 1808377 (2019)

    Article  Google Scholar 

  21. Y.-H. Won, O. Cho, T. Kim, D.-Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, E. Jang, Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575(7784), 634–638 (2019)

    Article  Google Scholar 

  22. E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H. Yang, Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019)

    Article  Google Scholar 

  23. Y. Sun, Q. Su, H. Zhang, F. Wang, S. Zhang, S. Chen, Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13(10), 11433–11442 (2019)

    Article  Google Scholar 

  24. J. Lim, Y.-S. Park, K. Wu, H.J. Yun, V.I. Klimov, Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18(10), 6645–6653 (2018)

    Article  Google Scholar 

  25. J.H. Chang, D. Hahm, K. Char, W.K. Bae, Interfacial engineering of core/shell heterostructured nanocrystal quantum dots for light-emitting applications. J. Inf. Disp. 18(2), 57–65 (2017)

    Article  Google Scholar 

  26. J.H. Chang, P. Park, H. Jung, B.G. Jeong, D. Hahm, G. Nagamine, J. Ko, J. Cho, L.A. Padilha, D.C. Lee, Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 12(10), 10231–10239 (2018)

    Article  Google Scholar 

  27. W.K. Bae, Y.-S. Park, J. Lim, D. Lee, L.A. Padilha, H. McDaniel, I. Robel, C. Lee, J.M. Pietryga, V.I. Klimov, Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4(1), 1–8 (2013)

    Article  Google Scholar 

  28. I. Cho, H. Jung, B.G. Jeong, J.H. Chang, Y. Kim, K. Char, D.C. Lee, C. Lee, J. Cho, W.K. Bae, Multifunctional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes. ACS Nano 11(1), 684–692 (2017)

    Article  Google Scholar 

  29. M.K. Choi, J. Yang, D.C. Kim, Z. Dai, J. Kim, H. Seung, V.S. Kale, S.J. Sung, C.R. Park, N. Lu, Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 30(1), 1703279 (2018)

    Article  Google Scholar 

  30. J. Kim, H.J. Shim, J. Yang, M.K. Choi, D.C. Kim, J. Kim, T. Hyeon, D.H. Kim, Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 29(38), 1700217 (2017)

    Article  Google Scholar 

  31. T.M. Smeeton, E. Angioni, E.A. Boardman, M. Izumi, N. Iwata, Y. Nakanishi, T. Ishida, Development of electroluminescent QD-LED displays, in SID 2019 Digest (2019)

    Google Scholar 

  32. W.K. Bae, J. Lim, Nanostructured colloidal quantum dots for efficient electroluminescence devices. Korean J. Chem. Eng. 36(2), 173–185 (2019)

    Article  Google Scholar 

  33. Y. Sun, Y. Jiang, X.W. Sun, S. Zhang, S. Chen, Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application. Chem. Rec. 19(8), 1729–1752 (2019)

    Article  Google Scholar 

  34. S. Rhee, J.H. Chang, D. Hahm, K. Kim, B.G. Jeong, H.J. Lee, J. Lim, K. Char, C. Lee, W.K. Bae, “Positive incentive” approach to enhance the operational stability of quantum dot-based light-emitting diodes. ACS Appl. Mater. Interfaces 11(43), 40252–40259 (2019)

    Article  Google Scholar 

  35. M. Segal, M. Baldo, R.J. Holmes, S. Forrest, Z. Soos, Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68(7), 075211 (2003)

    Article  Google Scholar 

  36. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698), 151–154 (1998)

    Article  Google Scholar 

  37. S. Reineke, Complementary LED technologies. Nat. Mater. 14(5), 459 (2015)

    Article  Google Scholar 

  38. S. Crooker, T. Barrick, J. Hollingsworth, V. Klimov, Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82(17), 2793–2795 (2003)

    Article  Google Scholar 

  39. A.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54(7), 4843 (1996)

    Article  Google Scholar 

  40. M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, A. Ekimov, Enhancement of electron-hole exchange interaction in CdSe nanocrystals: a quantum confinement effect. Phys. Rev. B 53(3), 1336 (1996)

    Article  Google Scholar 

  41. V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, A. Piryatinski, Single-exciton optical gain in semiconductor nanocrystals. Nature 447(7143), 441–446 (2007)

    Article  Google Scholar 

  42. Y. Shirasaki, G.J. Supran, W.A. Tisdale, V. Bulović, Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Phys. Rev. Lett. 110(21), 217403 (2013)

    Article  Google Scholar 

  43. H. Huang, A. Dorn, G.P. Nair, V. Bulović, M.G. Bawendi, Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors. Nano Lett. 7(12), 3781–3786 (2007)

    Article  Google Scholar 

  44. V.I. Klimov, Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 5(1), 285–316 (2014)

    Article  Google Scholar 

  45. D. Chepic, A.L. Efros, A.I. Ekimov, M. Ivanov, V. Kharchenko, I. Kudriavtsev, T. Yazeva, Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumin. 47(3), 113–127 (1990)

    Article  Google Scholar 

  46. V.I. Klimov, A.A. Mikhailovsky, D. McBranch, C.A. Leatherdale, M.G. Bawendi, Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287(5455), 1011–1013 (2000)

    Article  Google Scholar 

  47. V. Klimov, A. Mikhailovsky, S. Xu, A. Malko, J. Hollingsworth, A.C. Leatherdale, H.-J. Eisler, M. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490), 314–317 (2000)

    Google Scholar 

  48. X. Jin, C. Chang, W. Zhao, S. Huang, X. Gu, Q. Zhang, F. Li, Y. Zhang, Q. Li, Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron-blocking layer. ACS Appl. Mater. Interfaces 10(18), 15803–15811 (2018)

    Article  Google Scholar 

  49. S. Chen, W. Cao, T. Liu, S.-W. Tsang, Y. Yang, X. Yan, L. Qian, On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 10(1), 1–9 (2019)

    Google Scholar 

  50. J. Lim, B.G. Jeong, M. Park, J.K. Kim, J.M. Pietryga, Y.S. Park, V.I. Klimov, C. Lee, D.C. Lee, W.K. Bae, Influence of shell thickness on the performance of light‐emitting devices based on CdSe/\({\text{Zn}}_{{1 - {\text{X}}}} {\text{Cd}}_{\text{X}}\)S core/shell heterostructured quantum dots. Adv. Mater. 26(47), 8034–8040 (2014)

    Google Scholar 

  51. W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, L. Qian, Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9(1), 1–6 (2018)

    Article  Google Scholar 

  52. D.V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J. Phys. Chem. B 108(49), 18826–18831 (2004)

    Article  Google Scholar 

  53. R. Xie, U. Kolb, J. Li, T. Basché, A. Mews, Synthesis and characterization of highly luminescent CdSe–core CdS/\({\text{Zn}}_{0.5} {\text{Cd}}_{0.5}\)S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127(20), 7480–7488 (2005)

    Google Scholar 

  54. W.K. Bae, L.A. Padilha, Y.-S. Park, H. McDaniel, I. Robel, J.M. Pietryga, V.I. Klimov, Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7(4), 3411–3419 (2013)

    Article  Google Scholar 

  55. S. Dey, S. Chen, S. Thota, M.R. Shakil, S.L. Suib, J. Zhao, Effect of gradient alloying on photoluminescence blinking of single Cd \({\text{S}}_{{\text{X}}} {\text{S}}_{{{\text{e}}_{{{\text{1 - X}}}} }}\) nanocrystals. J. Phys. Chem. C 120(37), 20547–20554 (2016)

    Google Scholar 

  56. J. Zhang, Q. Yang, H. Cao, C.I. Ratcliffe, D. Kingston, Q.Y. Chen, J. Ouyang, X. Wu, D.M. Leek, F.S. Riehle, Bright gradient-alloyed Cd \({\text{Se}}_{{\text{X}}} {\text{S}}_{{{\text{1 - X}}}}\) quantum dots exhibiting cyan-blue emission. Chem. Mater. 28(2), 618–625 (2016)

    Google Scholar 

  57. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe) ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101(46), 9463–9475 (1997)

    Article  Google Scholar 

  58. J. McBride, J. Treadway, L.C. Feldman, S.J. Pennycook, S.J. Rosenthal, Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett. 6(7), 1496–1501 (2006)

    Article  Google Scholar 

  59. M.A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100(2), 468–471 (1996)

    Article  Google Scholar 

  60. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine–trioctylphosphine oxide–trioctylphospine mixture. Nano Lett. 1(4), 207–211 (2001)

    Article  Google Scholar 

  61. M. Nasilowski, P. Spinicelli, G. Patriarche, B. Dubertret, Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15(6), 3953–3958 (2015)

    Article  Google Scholar 

  62. H.-C. Wang, R.-S. Liu, in Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications (Springer, 2016), pp. 473–483

    Google Scholar 

  63. S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 125(38), 11466–11467 (2003)

    Article  Google Scholar 

  64. S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129(38), 11708–11719 (2007)

    Article  Google Scholar 

  65. N. McElroy, R. Page, D. Espinbarro-Valazquez, E. Lewis, S. Haigh, P. O’Brien, D. Binks, Comparison of solar cells sensitised by CdTe/CdSe and CdSe/CdTe core/shell colloidal quantum dots with and without a CdS outer layer. Thin Solid Films 560, 65–70 (2014)

    Article  Google Scholar 

  66. A.M. Dennis, B.D. Mangum, A. Piryatinski, Y.-S. Park, D.C. Hannah, J.L. Casson, D.J. Williams, R.D. Schaller, H. Htoon, J.A. Hollingsworth, Suppressed blinking and Auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett. 12(11), 5545–5551 (2012)

    Article  Google Scholar 

  67. J. Lim, Y.-S. Park, V.I. Klimov, Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17(1), 42–49 (2018)

    Article  Google Scholar 

  68. G.-W. Park, S.-J. Lee, J.-H. Ko, Comparison of outcoupling efficiency between bottom-emission and top-emission organic light-emitting diodes using FDTD simulation. J. Nanoelectron. Optoelectron. 11(2), 229–233 (2016)

    Article  Google Scholar 

  69. J.H. Oh, D.B. Choi, K.-H. Lee, H. Yang, Y.R. Do, Enhanced light extraction from green quantum dot light-emitting diodes by attaching microstructure arrayed films. IEEE J. Sel. Top. Quantum Electron. 22(1), 42–47 (2015)

    Article  Google Scholar 

  70. J. Pan, J. Chen, Q. Huang, L. Wang, W. Lei, A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport. RSC Adv. 7(69), 43366–43372 (2017)

    Article  Google Scholar 

  71. C.Y. Lee, N. Naik Mude, R. Lampande, K.J. Eun, J.E. Yeom, H.S. Choi, S.H. Sohn, J.M. Yoo, J.H. Kwon, Efficient cadmium-free inverted red quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 11(40), 36917–36924 (2019)

    Google Scholar 

  72. I. Cho, H. Jung, B.G. Jeong, D. Hahm, J.H. Chang, T. Lee, K. Char, D.C. Lee, J. Lim, C. Lee, Ligand-asymmetric janus quantum dots for efficient blue-quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 10(26), 22453–22459 (2018)

    Article  Google Scholar 

  73. D. Hahm, J.H. Chang, B.G. Jeong, P. Park, J. Kim, S. Lee, J. Choi, W.D. Kim, S. Rhee, J. Lim, Design principle for bright, robust, and color-pure InP/Zn\({\text{Se}}_{{\text{X}}} {\text{S}}_{{{\text{1 - X}}}}\)/ZnS heterostructures. Chem. Mater. 31(9), 3476–3484 (2019)

    Google Scholar 

  74. J. Lim, W.K. Bae, D. Lee, M.K. Nam, J. Jung, C. Lee, K. Char, S. Lee, InP@ ZnSeS, core@ composition gradient shell quantum dots with enhanced stability. Chem. Mater. 23(20), 4459–4463 (2011)

    Article  Google Scholar 

  75. S. Kim, T. Kim, M. Kang, S.K. Kwak, T.W. Yoo, L.S. Park, I. Yang, S. Hwang, J.E. Lee, S.K. Kim, Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 134(8), 3804–3809 (2012)

    Article  Google Scholar 

  76. J. Lim, M. Park, W.K. Bae, D. Lee, S. Lee, C. Lee, K. Char, Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ ZnSeS quantum dots. ACS Nano 7(10), 9019–9026 (2013)

    Article  Google Scholar 

  77. S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, M. Razeghi, Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector. Appl. Phys. Lett. 73(7), 963–965 (1998)

    Article  Google Scholar 

  78. H. Shen, H. Wang, X. Li, J.Z. Niu, H. Wang, X. Chen, L.S. Li, Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-Mn-doped ZnSe nanocrystals. Dalton Trans. 47, 10534–10540 (2009)

    Article  Google Scholar 

  79. B. Dong, L. Cao, G. Su, W. Liu, Facile synthesis of highly luminescent UV-blue emitting ZnSe/ZnS core/shell quantum dots by a two-step method. ChemComm 46(39), 7331–7333 (2010)

    Google Scholar 

  80. A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, L.S. Li, Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 7(7), 2951–2959 (2015)

    Article  Google Scholar 

  81. C. Xiang, W. Koo, S. Chen, F. So, X. Liu, X. Kong, Y. Wang, Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes. Appl. Phys. Lett. 101(5), 053303 (2012)

    Article  Google Scholar 

  82. W.-S. Song, H. Yang, Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots. Chem. Mater. 24(10), 1961–1967 (2012)

    Article  Google Scholar 

  83. B. Chen, N. Pradhan, H. Zhong, From large-scale synthesis to lighting device applications of ternary I–III–VI semiconductor nanocrystals: inspiring greener material emitters. J. Phys. Chem. 9(2), 435–445 (2018)

    Google Scholar 

  84. M.K. Choi, J. Yang, K. Kang, D.C. Kim, C. Choi, C. Park, S.J. Kim, S.I. Chae, T.-H. Kim, J.H. Kim, Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6(1), 1–8 (2015)

    Article  Google Scholar 

  85. A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D’Amone, R. Cingolani, G. Gigli, Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers. Adv. Mater. 20(10), 1886–1891 (2008)

    Article  Google Scholar 

  86. V. Wood, M.J. Panzer, J. Chen, M.S. Bradley, J.E. Halpert, M.G. Bawendi, V. Bulović, Inkjet-printed quantum dot–polymer composites for full-color ac-driven displays. Adv. Mater. 21(21), 2151–2155 (2009)

    Article  Google Scholar 

  87. W.K. Bae, S. Brovelli, V.I. Klimov, Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bull. 38(9), 721–730 (2013)

    Article  Google Scholar 

  88. D. Hahm, D. Ko, B.G. Jeong, S. Jeong, J. Lim, W.K. Bae, C. Lee, K. Char, Environmentally benign nanocrystals: challenges and future directions. J. Inf. Disp. 20(2), 61–72 (2019)

    Article  Google Scholar 

  89. J.-S. Park, J. Kyhm, H.H. Kim, S. Jeong, J. Kang, S.-E. Lee, K.-T. Lee, K. Park, N. Barange, J. Han, Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 16(11), 6946–6953 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Ki Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rhee, S., Park, J.W., Bae, W.K. (2021). Electroluminescence Devices with Colloidal Quantum Dots. In: Kang, I.B., Han, C.W., Jeong, J.K. (eds) Advanced Display Technology. Series in Display Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-33-6582-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6582-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6581-0

  • Online ISBN: 978-981-33-6582-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics