Skip to main content

Graphene-Based Nanomaterials: Introduction, Structure, Synthesis, Characterization, and Properties

  • Chapter
  • First Online:
Book cover Next Generation Graphene Nanomaterials for Cancer Theranostic Applications

Abstract

In this chapter, we discuss the graphene-based nanomaterials (GBNs) in brief. Further, this chapter will give a basic understanding about structure, synthesis, characterization, and properties of graphene oxide, reduced graphene oxide, and graphene quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolhosseinzadeh, S., Asgharzadeh, H., & Kim, H. S. (2015). Fast and fully-scalable synthesis of reduced graphene oxide. Scientific Reports, 5, 10160.

    Article  CAS  Google Scholar 

  • Akhavan, O. (2015). Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon, 81, 158–166.

    Article  CAS  Google Scholar 

  • Amarnath, C. A., Hong, C. E., Kim, N. H., Ku, B.-C., Kuila, T., & Lee, J. H. (2011). Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon, 49, 3497–3502.

    Article  CAS  Google Scholar 

  • Babu, K. J., Nahm, K. S., & Hwang, Y. J. (2014). A facile one-pot green synthesis of reduced graphene oxide and its composites for non-enzymatic hydrogen peroxide sensor applications. RSC Advances, 4, 7944–7951.

    Article  CAS  Google Scholar 

  • Bianco, A. (2013). Graphene: Safe or toxic? The two faces of the medal. Angewandte Chemie International Edition in English, 52, 4986–4997.

    Article  CAS  Google Scholar 

  • Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C. R., & Tascon, J. M. (2013). All in the graphene family–A recommended nomenclature for two-dimensional carbon materials. Elsevier.

    Google Scholar 

  • Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., et al. (2014). Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific Reports, 4, 4684.

    Article  CAS  Google Scholar 

  • Bourlinos, A. B., Georgakilas, V., Zboril, R., Steriotis, T. A., & Stubos, A. K. (2009a). Liquid-phase exfoliation of graphite towards solubilized graphenes. Small, 5, 1841–1845.

    Article  CAS  Google Scholar 

  • Bourlinos, A. B., Steriotis, T. A., Zboril, R., Georgakilas, V., & Stubos, A. (2009b). Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine. Journal of materials Science, 44, 1407–1411.

    Article  CAS  Google Scholar 

  • Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 249–259.

    Google Scholar 

  • Chen, J., Li, Y., Huang, L., Li, C., & Shi, G. (2015). High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 81, 826–834.

    Article  CAS  Google Scholar 

  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225–229.

    Article  CAS  Google Scholar 

  • Chen, T., Zeng, B., Liu, J., Dong, J., Liu, X., Wu, Z., Yang, X., & Li, Z. (2009) High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. Journal of Physics: Conference Series. 012051.

    Google Scholar 

  • Chen, W., Yan, L., & Bangal, P. R. (2010). Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48, 1146–1152.

    Article  CAS  Google Scholar 

  • De, S., King, P. J., Lotya, M., O’Neill, A., Doherty, E. M., Hernandez, Y., et al. (2010). Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 6, 458–464.

    Article  CAS  Google Scholar 

  • Ding, Y. H., Zhang, P., Zhuo, Q., Ren, H. M., Yang, Z. M., & Jiang, Y. (2011). A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology, 22, 215601.

    Article  CAS  Google Scholar 

  • Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., et al. (2012). Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 50, 4738–4743.

    Article  CAS  Google Scholar 

  • Dreyer, D. R., Murali, S., Zhu, Y., Ruoff, R. S., & Bielawski, C. W. (2011). Reduction of graphite oxide using alcohols. Journal of Materials Chemistry, 21, 3443–3447.

    Article  CAS  Google Scholar 

  • Dumée, L. F., Feng, C., He, L., Yi, Z., She, F., Peng, Z., et al. (2014). Single step preparation of meso-porous and reduced graphene oxide by gamma-ray irradiation in gaseous phase. Carbon, 70, 313–318.

    Article  CAS  Google Scholar 

  • Eda, G., Lin, Y. Y., Mattevi, C., Yamaguchi, H., Chen, H. A., Chen, I. S., et al. (2010). Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 22, 505–509.

    Article  CAS  Google Scholar 

  • Esfandiar, A., Akhavan, O., & Irajizad, A. (2011). Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. Journal of Materials Chemistry, 21, 10907–10914.

    Article  CAS  Google Scholar 

  • Fan, Z., Wang, K., Wei, T., Yan, J., Song, L., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48, 1686–1689.

    Article  CAS  Google Scholar 

  • Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., et al. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano, 5, 191–198.

    Article  CAS  Google Scholar 

  • Feng, H., Cheng, R., Zhao, X., Duan, X., & Li, J. (2013). A low-temperature method to produce highly reduced graphene oxide. Nature Communications, 4, 1539.

    Article  CAS  Google Scholar 

  • Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8, 235–246.

    Article  CAS  Google Scholar 

  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97, 187401.

    Article  CAS  Google Scholar 

  • Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1, 403–408.

    Article  CAS  Google Scholar 

  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Article  CAS  Google Scholar 

  • Georgakilas, V., Kouloumpis, A., Gournis, D., Bourlinos, A., Trapalis, C., & Zboril, R. (2013). Tuning the dispersibility of carbon nanostructures from organophilic to hydrophilic: Towards the preparation of new multipurpose carbon-based hybrids. Chemistry, 19, 12884–12891.

    Article  CAS  Google Scholar 

  • Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 115, 4744–4822.

    Article  CAS  Google Scholar 

  • Gnanaprakasam, P., & Selvaraju, T. (2014). Green synthesis of self assembled silver nanowire decorated reduced graphene oxide for efficient nitroarene reduction. RSC Advances, 4, 24518–24525.

    Article  CAS  Google Scholar 

  • Gokus, T., Nair, R. R., Bonetti, A., Bohmler, M., Lombardo, A., Novoselov, K. S., et al. (2009). Making graphene luminescent by oxygen plasma treatment. ACS Nano, 3, 3963–3968.

    Article  CAS  Google Scholar 

  • Gomez-Navarro, C., Meyer, J. C., Sundaram, R. S., Chuvilin, A., Kurasch, S., Burghard, M., et al. (2010). Atomic structure of reduced graphene oxide. Nano Letters, 10, 1144–1148.

    Article  CAS  Google Scholar 

  • Guo, H., Peng, M., Zhu, Z., & Sun, L. (2013). Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale, 5, 9040–9048.

    Article  CAS  Google Scholar 

  • Guo, H. L., Wang, X. F., Qian, Q. Y., Wang, F. B., & Xia, X. H. (2009). A green approach to the synthesis of graphene nanosheets. ACS Nano, 3, 2653–2659.

    Article  CAS  Google Scholar 

  • Hamilton, C. E., Lomeda, J. R., Sun, Z., Tour, J. M., & Barron, A. R. (2009). High-yield organic dispersions of unfunctionalized graphene. Nano Letters, 9, 3460–3462.

    Article  CAS  Google Scholar 

  • He, H., Klinowski, J., Forster, M., & Lerf, A. (1998). A new structural model for graphite oxide. Chemical Physics Letters, 287, 53–56.

    Article  CAS  Google Scholar 

  • Huang, L., Liu, Y., Ji, L.-C., Xie, Y.-Q., Wang, T., & Shi, W.-Z. (2011). Pulsed laser assisted reduction of graphene oxide. Carbon, 49, 2431–2436.

    Article  CAS  Google Scholar 

  • Hummers, W. S., Jr., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339.

    Article  CAS  Google Scholar 

  • Jin, S. H., Kim, D. H., Jun, G. H., Hong, S. H., & Jeon, S. (2013). Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano, 7, 1239–1245.

    Article  CAS  Google Scholar 

  • Ju, J., & Chen, W. (2014). Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosensors & Bioelectronics, 58, 219–225.

    Article  CAS  Google Scholar 

  • Kaminska, I., Das, M. R., Coffinier, Y., Niedziolka-Jonsson, J., Sobczak, J., Woisel, P., et al. (2012). Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. ACS Applied Materials & Interfaces, 4, 1016–1020.

    Article  CAS  Google Scholar 

  • Khan, U., O’Neill, A., Lotya, M., De, S., & Coleman, J. N. (2010). High-concentration solvent exfoliation of graphene. Small, 6, 864–871.

    Article  CAS  Google Scholar 

  • Khanra, P., Kuila, T., Kim, N. H., Bae, S. H., Yu, D.-S., & Lee, J. H. (2012). Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chemical Engineering Journal, 183, 526–533.

    Article  CAS  Google Scholar 

  • Kim, J., Cote, L. J., & Huang, J. (2012). Two dimensional soft material: New faces of graphene oxide. Accounts of Chemical Research, 45, 1356–1364.

    Article  CAS  Google Scholar 

  • Kim, J. H., Chang, W. S., Kim, D., Yang, J. R., Han, J. T., Lee, G. W., et al. (2015). 3D printing of reduced graphene oxide nanowires. Advanced Materials, 27, 157–161.

    Article  CAS  Google Scholar 

  • Kim, J., & Suh, J. S. (2014). Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet. ACS Nano, 8, 4190–4196.

    Article  CAS  Google Scholar 

  • Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S.-J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38–49.

    Article  CAS  Google Scholar 

  • Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2012). A green approach for the reduction of graphene oxide by wild carrot root. Carbon, 50, 914–921.

    Article  CAS  Google Scholar 

  • Kumawat, M. K., Thakur, M., Bahadur, R., Kaku, T., Prabhuraj, R. S., Ninawe, A., et al. (2019). Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Materials Science and Engineering: C, 103, 109774.

    Article  CAS  Google Scholar 

  • Kumawat, M. K., Thakur, M., Gurung, R. B., & Srivastava, R. (2017a). Graphene quantum dots for cell proliferation, nucleus imaging, and photoluminescent sensing applications. Scientific Reports, 7, 15858.

    Article  CAS  Google Scholar 

  • Kumawat, M. K., Thakur, M., Gurung, R. B., & Srivastava, R. (2017b). Graphene quantum dots from mangifera indica: Application in near-infrared bioimaging and intracellular nanothermometry. ACS Sustainable Chemistry & Engineering, 5, 1382–1391.

    Article  CAS  Google Scholar 

  • Lei, Z., Lu, L., & Zhao, X. (2012). The electrocapacitive properties of graphene oxide reduced by urea. Energy & Environmental Science, 5, 6391–6399.

    Article  CAS  Google Scholar 

  • Lerf, A., He, H., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. The Journal of Physical Chemistry B, 102, 4477–4482.

    Article  CAS  Google Scholar 

  • Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., et al. (2010). Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition in English, 49, 4430–4434.

    Article  CAS  Google Scholar 

  • Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., & Qu, L. (2011). An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics. Advanced materials, 23(6), 776–780.

    Google Scholar 

  • Li, L. L., Ji, J., Fei, R., Wang, C. Z., Lu, Q., Zhang, J. R., et al. (2012). A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Advanced Functional Materials, 22, 2971–2979.

    Article  CAS  Google Scholar 

  • Li, X., Wang, H., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. (2009). Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 131, 15939–15944.

    Article  CAS  Google Scholar 

  • Liu, H., Ye, T., & Mao, C. (2007). Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition in English, 46, 6473–6475.

    Article  CAS  Google Scholar 

  • Liu, J., Fu, S., Yuan, B., Li, Y., & Deng, Z. (2010). Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. Journal of the American Chemical Society, 132, 7279–7281.

    Article  CAS  Google Scholar 

  • Liu, R., Wu, D., Feng, X., & Mullen, K. (2011). Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. Journal of the American Chemical Society, 133, 15221–15223.

    Article  CAS  Google Scholar 

  • Liu, Y., Huang, L., Guo, G. L., Ji, L. C., Wang, T., Xie, Y. Q., et al. (2012). Pulsed laser assisted reduction of graphene oxide as a flexible transparent conducting material. Journal of Nanoscience and Nanotechnology, 12, 6480–6483.

    Article  CAS  Google Scholar 

  • Lu, J., Yeo, P. S. E., Gan, C. K., Wu, P., & Loh, K. P. (2011). Transforming C 60 molecules into graphene quantum dots. Nature Nanotechnology, 6, 247–252.

    Article  CAS  Google Scholar 

  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., et al. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814.

    Article  CAS  Google Scholar 

  • Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1, 73.

    Article  CAS  Google Scholar 

  • Mueller, M. L., Yan, X., McGuire, J. A., & Li, L. S. (2010). Triplet States and electronic relaxation in photoexcited graphene quantum dots. Nano Letters, 10, 2679–2682.

    Article  CAS  Google Scholar 

  • Pan, D., Zhang, J., Li, Z., & Wu, M. (2010). Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Advanced Materials, 22, 734–738.

    Article  CAS  Google Scholar 

  • Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A., & Tascon, J. M. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560–10564.

    Article  CAS  Google Scholar 

  • Pham, V. H., Pham, H. D., Dang, T. T., Hur, S. H., Kim, E. J., Kong, B. S., et al. (2012). Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. Journal of Materials Chemistry, 22, 10530–10536.

    Article  CAS  Google Scholar 

  • Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 127, 5917–5927.

    Article  CAS  Google Scholar 

  • Russier, J., Treossi, E., Scarsi, A., Perrozzi, F., Dumortier, H., Ottaviano, L., et al. (2013). Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale, 5, 11234–11247.

    Article  CAS  Google Scholar 

  • Salas, E. C., Sun, Z., Lüttge, A., & Tour, J. M. (2010). Reduction of graphene oxide via bacterial respiration. ACS Nano, 4, 4852–4856.

    Article  CAS  Google Scholar 

  • Sanchez, V. C., Jachak, A., Hurt, R. H., & Kane, A. B. (2012). Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chemical Research in Toxicology, 25, 15–34.

    Article  CAS  Google Scholar 

  • Seo, M., Yoon, D., Hwang, K. S., Kang, J. W., & Kim, J. (2013). Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide. Carbon, 64, 207–218.

    Article  CAS  Google Scholar 

  • Shen, J., Zhu, Y., Chen, C., Yang, X., & Li, C. (2011). Facile preparation and upconversion luminescence of graphene quantum dots. Chemical Communications (Cambridge, England), 47, 2580–2582.

    Article  CAS  Google Scholar 

  • Shen, J., Zhu, Y., Yang, X., & Li, C. (2012a). Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications (Cambridge, England), 48, 3686–3699.

    Article  CAS  Google Scholar 

  • Shen, J., Zhu, Y., Yang, X., Zong, J., Zhang, J., & Li, C. (2012b). One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New Journal of Chemistry, 36, 97–101.

    Article  CAS  Google Scholar 

  • Shinde, D. B., & Pillai, V. K. (2012). Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chemistry, 18, 12522–12528.

    Article  CAS  Google Scholar 

  • Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., et al. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19, 1987–1992.

    Article  CAS  Google Scholar 

  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565.

    Google Scholar 

  • Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft, 31, 1481–1487.

    Article  CAS  Google Scholar 

  • Tabrizi, M. A., Azar, S. J., & Varkani, J. N. (2014). Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing. Analytical Biochemistry, 460, 29–35.

    Article  CAS  Google Scholar 

  • Tang, Y., Guo, Q., Chen, Z., Zhang, X., & Lu, C. (2019). In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: Synergistic enhancement of mechanical properties and piezoresistivity. Composites Part A Applied Science and Manufacturing, 116, 106–113.

    Article  CAS  Google Scholar 

  • Terrones, M., Botello-Méndez, A. R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., et al. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano today, 5, 351–372.

    Article  CAS  Google Scholar 

  • Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., et al. (2012). Optically tunable amino-functionalized graphene quantum dots. Advanced Materials, 24, 5333–5338.

    Article  CAS  Google Scholar 

  • Tran, D. N., Kabiri, S., & Losic, D. (2014). A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon, 76, 193–202.

    Article  CAS  Google Scholar 

  • Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong, H. Y., et al. (2016). High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 353, 1413–1416.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, Y., Xu, T., Liao, H., Yao, C., Liu, Y., et al. (2014). Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nature Communications, 5, 5357.

    Article  CAS  Google Scholar 

  • Wang, Y., Shi, Z., & Yin, J. (2011). Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Applied Materials & Interfaces, 3, 1127–1133.

    Article  CAS  Google Scholar 

  • Wick, P., Louw-Gaume, A. E., Kucki, M., Krug, H. F., Kostarelos, K., Fadeel, B., et al. (2014). Classification framework for graphene-based materials. Angewandte Chemie International Edition in English, 53, 7714–7718.

    Article  CAS  Google Scholar 

  • Wijaya, R., Andersan, G., Santoso, S. P., & Irawaty, W. (2020). Green reduction of graphene oxide using kaffir lime peel extract (Citrus hystrix) and its application as adsorbent for methylene blue. Scientific Reports, 10, 1–9.

    Article  CAS  Google Scholar 

  • Xue, Q., Huang, H., Wang, L., Chen, Z., Wu, M., Li, Z., et al. (2013). Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale, 5, 12098–12103.

    Article  CAS  Google Scholar 

  • Yin, R., Shen, P., & Lu, Z. (2019). A green approach for the reduction of graphene oxide by the ultraviolet/sulfite process. Journal of Colloid and Interface Science, 550, 110–116.

    Article  CAS  Google Scholar 

  • Zhang, M., Bai, L., Shang, W., Xie, W., Ma, H., Fu, Y., et al. (2012). Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 22, 7461–7467.

    Article  CAS  Google Scholar 

  • Zheng, X. T., Ananthanarayanan, A., Luo, K. Q., & Chen, P. (2015). Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small, 11, 1620–1636.

    Article  CAS  Google Scholar 

  • Zhou, X., Zhang, J., Wu, H., Yang, H., Zhang, J., & Guo, S. (2011). Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene. The Journal of Physical Chemistry C, 115, 11957–11961.

    Article  CAS  Google Scholar 

  • Zhu, S., Wang, L., Li, B., Song, Y., Zhao, X., Zhang, G., et al. (2014). Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon, 77, 462–472.

    Article  CAS  Google Scholar 

  • Zhu, S., Zhang, J., Tang, S., Qiao, C., Wang, L., Wang, H., et al. (2012). Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Advanced Functional Materials, 22, 4732–4740.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R., Thakur, M., Kumawat, M.K., Bahadur, R. (2021). Graphene-Based Nanomaterials: Introduction, Structure, Synthesis, Characterization, and Properties. In: Next Generation Graphene Nanomaterials for Cancer Theranostic Applications . Springer, Singapore. https://doi.org/10.1007/978-981-33-6303-8_2

Download citation

Publish with us

Policies and ethics