Skip to main content

New Advances of the Nanotechnology in Textile Engineering: Functional Finishing with Quantum Dots and Others Nanoparticles

  • Chapter
  • First Online:
Nanomaterials and Nanotechnology

Abstract

The development of textile materials with functional nanoparticles has been driven by the advancement of materials science, the globalized market, competitiveness and the relentless pursuit of solutions that generate innovations in processes and products environmentally correct. Advancement in the studies with quantum dots and semiconductors nanoparticles applied to the surface modifications such as textile fibers and plastics with the purpose of adding specific properties has been one of the reasons for the growth of nanotechnology applied in the textile industry, mainly in the area of multifunctional finishing. The application of many of these inorganic nanocoatings on textiles allows functionalize so as to improve their performance in a wide variety of uses ranging from technical textiles (geotextiles, medical, microelectronic, solar cells and many others) to the conventional textile, giving them new properties, such as the photoluminescence, antibacterial properties, fungicides, self-cleaning, UV protection, flame retardant, supercapacitors, sensors and controlled drugs release. In the years 50–70 have emerged many patents related to the inorganics material coating on textile fibers for technical applications, but it was only in the early 90 that appeared the first patents and publications with application of quantum dots and others inorganics nanoparticles in coating of optical fibers, glass fibers, cellulosic fibers, wool, silk, non-woven and paper. Various techniques of application of functional coatings have been studied: Chemical techniques (wet finishing) carried out mainly by reactions, depletion and chemicals dispersions: examples: sol-gel, electrodeposition, self-assembly and other; techniques carried out by physical and chemical methods of low environmental impact, examples, ALD, PVD, PECVD, CDV, PLD and others. In this chapter proposed aims to contribute to describe the development of functional and smart textiles using quantum dots and others inorganics nanocoatings. And yet in this chapter intends to describe to new physical and chemical processes of nanocoatings with different semiconductors quantum dots, metals and ceramics nanoparticles (Au, Ag, AgCl, ZnO, TiO2, SiO2, Al2O3 and others), carbon nanotubes, graphenes, in order to obtain a smart textile material, as well as describe the properties that textiles may have showing their performance and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi AR, Morsali A (2011) Synthesis and properties of silk yarn containing Ag nanoparticles under ultrasound irradiation. Ultrason Sonochem 18(1):282–287

    Article  CAS  Google Scholar 

  • Abouraddy AF et al (2007) Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater 6(5):336–347

    Article  CAS  Google Scholar 

  • Abramov OV et al (2009) Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surf Coat Technol 204(5):718–722

    Article  CAS  Google Scholar 

  • Adera S et al (2013) Non-wetting droplets on hot superhydrophilic surfaces. Nat Commun. 4:1–7. Available at: http://dx.doi.org/10.1038/ncomms3518

  • Agrawal N et al (2019) Green synthesis of robust superhydrophobic antibacterial and UV-blocking cotton fabrics by a dual-stage silanization approach. Adv Mater Interfaces 6(11):1900032

    Article  CAS  Google Scholar 

  • Ahmad I, Kan C (2017) Visible-light-driven, dye-sensitized TiO2 photo-catalyst for self-cleaning cotton fabrics. Coatings 7(11):192. https://doi.org/10.3390/coatings7110192

    Article  CAS  Google Scholar 

  • Ahmed NSE, El-Shishtawy RM (2010) The use of new technologies in coloration of textile fibers. J Mater Sci 45(5):1143–1153

    Article  CAS  Google Scholar 

  • Alebeid OK, Zhao T (2017) Review on: developing UV protection for cotton fabric. J Text Inst 108(12):2027–2039. https://doi.org/10.1080/00405000.2017.1311201

    Article  CAS  Google Scholar 

  • Algaba† IM, Pepió‡ M, Riva*† A (2007) Modelization of the influence of the treatment with two optical brighteners on the ultraviolet protection factor of cellulosic fabrics. Am Chem Soc. https://doi.org/10.1021/ie060723c

  • Arakha M et al (2015) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Reports 5:9578

    CAS  Google Scholar 

  • Ashby MF, Ferreira PJ, Schodek DL (2009) Nanomaterial product forms and functions. In: Ashby MF, Ferreira PJ, Schodek DL (eds) Nanomaterials, nanotechnologies and design: an introduction for engineers and architects. Elsevier, New York, pp 403–465

    Chapter  Google Scholar 

  • Aslam S et al (2018) Multifunctional finishing of cotton fabric. Autex Res J. Sciendo, 1(ahead-of-print)

    Google Scholar 

  • Asz J et al (2006) Treatment of toxic epidermal necrolysis in a pediatric patient with a nanocrystalline silver dressing. J Pediatr Surg 41(12):e9–e12

    Article  Google Scholar 

  • Avila AG, Hinestroza JP (2008) Smart textiles: tough cotton. Nat Nanotechnol 3(8):458

    Article  CAS  Google Scholar 

  • Barton D, Davidson H (2008) Fluorescent brighteners. Rev Prog Color Relat Top 5(1):3–11. https://doi.org/10.1111/j.1478-4408.1974.tb03786.x

  • Bera D et al (2010) Quantum dots and their multimodal applications: a review. Materials 3(4):2260–2345

    Article  CAS  Google Scholar 

  • Brayner R et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870

    Article  CAS  Google Scholar 

  • Busnaina A (2018) Introduction to nanomanufacturing. In: Handbook of nanoscience, engineering, and technology. CRC Press, pp 374–389

    Google Scholar 

  • Carneiro JO et al (2011) Photocatalytic activity and UV-protection of TiO2 nanocoatings on poly (lactic acid) fibres deposited by pulsed magnetron sputtering. J Nanosci Nanotechnol 11(10):8979–8985

    Article  CAS  Google Scholar 

  • Carp O (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

  • Cavaleiro A, de Hosson JT (2007) Nanostructured coatings. Springer Science & Business Media

    Google Scholar 

  • Ci L et al (2003) Double wall carbon nanotubes with an inner diameter of 0.4 nm. Chem Vap Deposition 9(3):119–121. https://doi.org/10.1002/cvde.200304142

    Article  CAS  Google Scholar 

  • Clark M (2011) Principles, processes and types of dyes. Woodhead Pub. Available at: https://www.sciencedirect.com/book/9781845696955/handbook-of-textile-and-industrial-dyeing. Accessed 25 Mar 2019

  • Coyle S et al (2007) Smart nanotextiles: a review of materials and applications. MRS Bull 32(5):434–442

    Article  CAS  Google Scholar 

  • d’Água RB et al (2018) Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis. New J Chem 42(2):1052–1060

    Article  Google Scholar 

  • Dahotre NB, Nayak S (2005) Nanocoatings for engine application. Surf Coat Technol 194(1):58–67

    Article  CAS  Google Scholar 

  • Daoud WA, Xin JH, Tao X (2004) Superhydrophobic silica nanocomposite coating by a low-temperature process. J Am Ceram Soc 87(9):1782–1784

    Article  CAS  Google Scholar 

  • Dasari TP, Pathakoti K, Hwang H-M (2013) Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci 25(5):882–888

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B 79(1):5–18

    Article  CAS  Google Scholar 

  • Dolgin E (2015) Textiles: fabrics of life. Nature 519

    Google Scholar 

  • Dubrovski PD (2010) Woven fabrics and ultraviolet protection. In: Dubrovski PD (ed) Woven fabrics and ultraviolet protection. Sciyo

    Google Scholar 

  • Eda G et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    Article  CAS  Google Scholar 

  • El-Hady MMA, Farouk A, Sharaf S (2013) Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohyd Polym 92(1):400–406. https://doi.org/10.1016/j.carbpol.2012.08.085

    Article  CAS  Google Scholar 

  • Elmaaty TA et al (2018) One-step green approach for functional printing and finishing of textiles using silver and gold NPs. RSC Adv 8(45):25546–25557

    Article  CAS  Google Scholar 

  • El-Naggar ME, Shaarawy S, Hebeish AA (2018) Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohyd Polym 181:307–316

    Article  CAS  Google Scholar 

  • Engel LS, Sanders CV, Lopez FA (2009) Fever and rash in critical care. In: Infectious diseases in critical care medicine. CRC Press, pp 39–68

    Google Scholar 

  • Erdman A et al (2016) Preparation of multicolor luminescent cellulose fibers containing lanthanide doped inorganic nanomaterials. J Lumin 169:520–527

    Article  CAS  Google Scholar 

  • Ergindemir H et al (2016) Synthesis of novel UV absorbers bisindolylmethanes and investigation of their applications on cotton-based textile materials. Molecules 21(6):718. https://doi.org/10.3390/molecules21060718

    Article  CAS  Google Scholar 

  • Euratex—The European Apparel and Textile (2006) The future is…textiles! strategic research agenda of the European technology platform for the future of textile and clothing

    Google Scholar 

  • Farouk A et al (2012) ZnO nanoparticles-chitosan composite as antibacterial finish for textiles. Int J Carbohydr Chem

    Google Scholar 

  • Fauss E (2008) The silver nanotechnology commercial inventory. University of Virginia

    Google Scholar 

  • Fiedot-Toboła M et al (2018) Deposition of zinc oxide on different polymer textiles and their antibacterial properties. Materials 11(5):707

    Article  CAS  Google Scholar 

  • Gang S, Dapeng L (2006) Dyeing textiles using nanoparticles. Available at: https://patents.google.com/patent/US7048771B2/en?oq=7048771

  • Gao D et al (2019) Construction of durable antibacterial and anti-mildew cotton fabric based on P (DMDAAC-AGE)/Ag/ZnO composites. Carbohyd Polym 204:161–169

    Article  CAS  Google Scholar 

  • Garcia LMP et al (2018) Photocatalytic activity and photoluminescence properties of TiO2, In 2 O3, TiO2/In 2 O 3 thin films multilayer. J Mater Sci Mater Electron 29(8):6530–6542

    Article  CAS  Google Scholar 

  • Gogotsi Y (2006) Nanomaterials Handbook. CRC Press, Boca Raton

    Google Scholar 

  • Gomes J, Sampaio S, Maia F (no date) Colored nanoparticles: composition and application to protein fibers and hair

    Google Scholar 

  • Gosh SK (2006) Functional coatings. Weimheim. Wiley-VCH, Germany

    Google Scholar 

  • Gowri VS et al (2010) Functional finishing of polyamide fabrics using ZnO–PMMA nanocomposites. J Mater Sci 45(9):2427–2435

    Article  CAS  Google Scholar 

  • Guan X et al (2019) Fabrication of Ag/AgCl/ZIF-8/TiO2 decorated cotton fabric as a highly efficient photocatalyst for degradation of organic dyes under visible light. Cellulose 26(12):7437–7450

    Article  CAS  Google Scholar 

  • Hassabo AG et al (2019) Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohyd Polym 210:144–156

    Article  CAS  Google Scholar 

  • Hatamie A et al (2015) Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31(39):10913–10921

    Article  CAS  Google Scholar 

  • Hatch KL, Osterwalder U (2006) Garments as solar ultraviolet radiation screening materials. Dermatol Clin 24(1):85–100

    Article  CAS  Google Scholar 

  • Haufe H et al (2008) Bioactive textiles by sol–gel immobilised natural active agents. J Sol-Gel Sci Technol 45(1):97–101

    Article  CAS  Google Scholar 

  • Hegemann D et al (2009) Recent developments in Ag metallised textiles using plasma sputtering. Mater Technol 24(1):41–45

    Article  CAS  Google Scholar 

  • Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129

    Article  CAS  Google Scholar 

  • Holme I (2003) UV absorbers for protection and performance. Int Dyer 13:9–10

    Google Scholar 

  • Hu L et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714. https://doi.org/10.1021/nl903949m

    Article  CAS  Google Scholar 

  • Hu JW et al (2015) Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon 87:292–298

    Article  CAS  Google Scholar 

  • Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910

    Article  CAS  Google Scholar 

  • Huang S et al (2016) Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Adv 6(16):13359–13364. https://doi.org/10.1039/c5ra24214b

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  • Joe A et al (2017) Antibacterial mechanism of ZnO nanoparticles under dark conditions. J Ind Eng Chem 45:430–439

    Article  CAS  Google Scholar 

  • Johnston JH, Burridge KA, Kelly FM (2009) The formation and binding of gold nanoparticles onto wool fibres. In: AIP conference proceedings, pp 189–192

    Google Scholar 

  • Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A, pp 10776–10787. https://doi.org/10.1039/c4ta00203b

  • Kamali P, Talebian N (2018) Sonochemically sol–gel derived coating of textiles using heterojunction SnO2/ZnO/chitosan bionanocomposites: in vitro antibacterial evaluation. J Coat Technol Res 15(5):1133–1144

    Article  CAS  Google Scholar 

  • Kangwansupamonkon W et al (2009) Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed Nanotechnol Biol Med 5(2):240–249

    Article  CAS  Google Scholar 

  • Kaounides L, Yu H, Harper T (2007) Nanotechnology innovation and applications in textiles industry: current markets and future growth trends. Mater Technol 22(4):209–237

    Article  Google Scholar 

  • Karimi EZ, Ansari M (2018) Comparison of antibacterial activity of ZnO nanoparticles fabricated by two different methods and coated on tetron fabric. Open Biotechnol J 12(1)

    Google Scholar 

  • Khan MZ et al (2018) Development of UV protective, superhydrophobic and antibacterial textiles using ZnO and TiO2 nanoparticles. Fibers Polym 19(8):1647–1654

    Article  CAS  Google Scholar 

  • Khose RV et al (2018) Novel approach towards the synthesis of carbon-based transparent highly potent flame retardant. Carbon 139:205–209. https://doi.org/10.1016/j.carbon.2018.06.049

    Article  CAS  Google Scholar 

  • Kim JH et al (2018) Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J Colloid Interface Sci 513:566–574

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49(1):1–14

    Article  CAS  Google Scholar 

  • Kopczyński K, Milczarek G, Lota G (2016) Polysulphides reversible faradaic reactions in supercapacitor application. Electrochem Commun 68:28–31. https://doi.org/10.1016/j.elecom.2016.04.016

    Article  CAS  Google Scholar 

  • Kuo W-S et al (2017) Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 120:185–194. https://doi.org/10.1016/j.biomaterials.2016.12.022

    Article  CAS  Google Scholar 

  • Lee HJ, Kim J, Park CH (2014) Fabrication of self-cleaning textiles by TiO2-carbon nanotube treatment. Text Res J 84(3):267–278

    Article  CAS  Google Scholar 

  • Leong KH et al (2018) Physical mixing of N-doped graphene quantum dots functionalized TiO2 for sustainable degradation of methylene blue. IOP Conf Series Mater Sci Eng 409(1):012009. https://doi.org/10.1088/1757-899x/409/1/012009

    Article  CAS  Google Scholar 

  • Li Y et al (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    Article  CAS  Google Scholar 

  • Li R et al (2014) Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot. J Nanopart Res 16(9):2581

    Article  CAS  Google Scholar 

  • Liao YF et al (2013) Fabrication of antibacterial and UV protective silk fabrics via in situ generating ZnO nanoparticles by hyperbranched polymer. In: Advanced materials research. Trans Tech Publ, pp. 374–379

    Google Scholar 

  • Lim PF et al (2018) Solar light harvesting N-graphene quantum dots decorated TiO2 for enhanced photocatalytic activity. In: Huang YF et al (eds) E3S Web of conferences, vol 65. EDP Sciences, p 05014. https://doi.org/10.1051/e3sconf/20186505014

  • Liu Y et al (2008) Functionalization of cotton with carbon nanotubes. J Mater Chem 18(29):3454–3460

    Article  CAS  Google Scholar 

  • Liu Y, Chen X, Xin JH (2009) Can superhydrophobic surfaces repel hot water? J Mater Chem 19(31):5602–5611

    Article  CAS  Google Scholar 

  • Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7(2):26–31

    Article  Google Scholar 

  • Long live the NNI (2019) Nature nanotechnology 14(11):995–995. https://doi.org/10.1038/s41565-019-0580-1

  • Lu X et al (2017) A multi-functional textile that combines self-cleaning, water-proofing and VO2-based temperature-responsive thermoregulating. Sol Energy Mater Sol Cells 159:102–111

    Article  CAS  Google Scholar 

  • Lumbreras-Aguayo A et al (2019) Poly (methacrylic acid)-modified medical cotton gauzes with antimicrobial and drug delivery properties for their use as wound dressings. Carbohyd Polym 205:203–210

    Article  CAS  Google Scholar 

  • Luna M et al (2018) TiO2-SiO2 coatings with a low content of AuNPs for producing self-cleaning building materials. Nanomaterials 8(3):177

    Article  CAS  Google Scholar 

  • Mansoori GA (2005) Advances in atomic and molecular nanotechnology. Principles of nanotechnology. World Scientific Publishing Co. Ptc. Ltd, Singapore

    Google Scholar 

  • Martins NCT et al (2016) N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl Catal B Environ 193:67–74. https://doi.org/10.1016/J.APCATB.2016.04.016

    Article  CAS  Google Scholar 

  • McGuffie MJ et al (2016) Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. Nanomed Nanotechnol Biol Med 12(1):33–42

    Article  CAS  Google Scholar 

  • Meruvu H et al (2011) Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. J Rasayan Chem 4(1):217–222

    CAS  Google Scholar 

  • Mills A, Hunte S Le (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    Article  CAS  Google Scholar 

  • Movilla JL et al (2005) Calculation of electronic density of states induced by impurities in TiO2 quantum dots. Phys Rev B 72(15):153313

    Article  CAS  Google Scholar 

  • Mukhopadhyay SM, Joshi P, Pulikollu RV (2005) Thin films for coating nanomaterials. Tsinghua Sci Technol 10(6):709–717

    Article  CAS  Google Scholar 

  • Nanjappan K, Aarumugam V, Kesavan V (2018) Plasma process for coated fabric materials with Zinc to prepare antibacterial modal fabric. Mater Technol 33(10):635–641

    Article  CAS  Google Scholar 

  • National Science and Technology Council (2018) The national nanotechnology iniative supplement to the president’s 2019 budger. Available at: https://www.whitehouse.gov/wp-content/uploads/2018/08/The-National-Nanotechnology-Initiative-Supplement-to-the-President’s-2019-Budget.pdf

  • Neto NFA et al (2017) Photoluminescence and photocatalytic properties of Ag/AgCl synthesized by sonochemistry: statistical experimental design. J Mater Sci Mater Electron 28(16):12273–12281

    Article  CAS  Google Scholar 

  • Neto NFA et al (2018) Increase of antimicrobial and photocatalytic properties of silver-doped PbS obtained by sonochemical method. J Mater Sci Mater Electron 29(22):19052–19062

    Article  CAS  Google Scholar 

  • Neto NFA et al (2019) Effect of temperature on the morphology and optical properties of Ag2WO4 obtained by the co-precipitation method: photocatalytic activity. Ceram Int 45(12):15205–15212

    Article  CAS  Google Scholar 

  • Nickoloff BJ (2008) Immunobiology of acute cytotoxic drug reactions. In: Dermatologic immunity. Karger Publishers, pp 53–64

    Google Scholar 

  • Nourbakhsh S, Montazer M, Khandaghabadi Z (2018) Zinc oxide nano particles coating on polyester fabric functionalized through alkali treatment. J Ind Text 47(6):1006–1023

    Article  CAS  Google Scholar 

  • Onar N et al (2009) Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J Appl Polym Sci 114(4):2003–2010

    Article  CAS  Google Scholar 

  • Ou N-Q et al (2019) Facet-dependent interfacial charge transfer in TiO2/nitrogen-doped graphene quantum dots heterojunctions for visible-light driven photocatalysis. Catalysts 9(4):345

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9(3):35004

    Article  CAS  Google Scholar 

  • Pakdel E, Daoud WA, Wang X (2013) Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite. Appl Surf Sci 275:397–402

    Article  CAS  Google Scholar 

  • Pakdel E et al (2017) Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics. Cellulose 24(9):4003–4015

    Article  CAS  Google Scholar 

  • Paladini V et al (2007) Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development. Energy Convers Manag 48(11):3001–3008

    Article  CAS  Google Scholar 

  • Pandiyarasan V et al (2017) Hydrothermal growth of reduced graphene oxide on cotton fabric for enhanced ultraviolet protection applications. Mater Lett 188:123–126. https://doi.org/10.1016/J.MATLET.2016.11.047

    Article  CAS  Google Scholar 

  • Pang Y et al (2018) Facile preparation of N-doped graphene quantum dots as quick-dry fluorescent ink for anti-counterfeiting. New J Chem 42(20):17091–17095

    Article  CAS  Google Scholar 

  • Pavlidou S, Paul R (2018) Soil repellency and stain resistance through hydrophobic and oleophobic treatments. In: Williams J (ed) Waterproof and water repellent textiles and clothing. Woodhead Publishing, pp 73–88. https://doi.org/10.1016/b978-0-08-101212-3.00003-4

  • Pelton R, Geng X, Brook M (2006) Photocatalytic paper from colloidal TiO2—fact or fantasy. Adv Colloid Interface Sci 127(1):43–53

    Article  CAS  Google Scholar 

  • Perelshtein I et al (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705

    Article  CAS  Google Scholar 

  • Perelshtein I, Applerot G et al (2009a) Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl Mater Interfaces 1(2):361–366

    Article  CAS  Google Scholar 

  • Perelshtein I, Applerot Guy et al (2009b) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204(1–2):54–57

    Article  CAS  Google Scholar 

  • Pinatti IM et al (2019) Rare earth doped silver tungstate for photoluminescent applications. J Alloys Compd 771:433–447

    Article  CAS  Google Scholar 

  • Popescu MC et al (2019) Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition. Appl Surf Sci 481:1287–1298

    Article  CAS  Google Scholar 

  • Porter AL, Youtie J (2009) How interdisciplinary is nanotechnology? J Nanopart Res 11(5):1023–1041

    Article  Google Scholar 

  • Pozzo RL, Baltanas MA, Cassano AE (1997) Supported titanium oxide as photocatalyst in water decontamination: state of the art. Catal Today 39(3):219–231

    Article  CAS  Google Scholar 

  • Premanathan M et al (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol Biol Med 7(2):184–192

    Article  CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  • Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific

    Google Scholar 

  • Ramamurthy P et al (2017) Antimicrobial characteristics of pulsed laser deposited metal oxides on polypropylene hydroentangled nonwovens for medical textiles. Fibres & Textiles in Eastern Europe

    Google Scholar 

  • Ran J et al (2018) Growing ZnO nanoparticles on polydopamine-templated cotton fabrics for durable antimicrobial activity and UV protection. Polymers 10(5):495

    Article  CAS  Google Scholar 

  • Reddy LS et al (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol 52(11):1388–1397

    Article  CAS  Google Scholar 

  • Reijnders L (2008) Hazard reduction for the application of titania nanoparticles in environmental technology. J Hazard Mater 152(1):440–445

    Article  CAS  Google Scholar 

  • Richardson MJ, Johnston JH (2007) Sorption and binding of nanocrystalline gold by Merino wool fibres—an XPS study. J Colloid Interface Sci 310(2):425–430

    Article  CAS  Google Scholar 

  • Rilda Y et al (2018) The function of cross linker carboxylic acid for TiO2/Chitosan/SiO2 coated as self cleaning fabrics. Orient J Chem 34(6):2942

    Article  CAS  Google Scholar 

  • Rivero PJ et al (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10(1):501

    Article  CAS  Google Scholar 

  • Rusnano (no date) RUSNANO Annual Report—2017, 2018

    Google Scholar 

  • Saad SR et al (2016) Self-cleaning technology in fabric: a review. IOP Conf Series Mater Sci Eng 133(1):012028. https://doi.org/10.1088/1757-899X/133/1/012028

    Article  Google Scholar 

  • Safardoust-Hojaghan H, Salavati-Niasari M (2017) Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J Cleaner Prod 148:31–36. https://doi.org/10.1016/J.JCLEPRO.2017.01.169

    Article  CAS  Google Scholar 

  • Salama M, El-Sayed AA (2014) Imparting permanent antibacterial properties to viscose fabric using zinc oxide nanoparticles and polymeric binders. World Appl Sci J 32(3):392–398

    Google Scholar 

  • Salat M et al (2018) Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydr Polym 189:198–203

    Article  CAS  Google Scholar 

  • Samanta AK et al (2017) Fire retardant finish of jute fabric with nano zinc oxide. Cellulose 24(2):1143–1157

    Article  CAS  Google Scholar 

  • Sasaki T, Tour JM (2008) Synthesis of a new photoactive nanovehicle: a nanoworm. Org Lett 10(5):897–900

    Article  CAS  Google Scholar 

  • Schawabl F (2008) Advanced quantum mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85062-5_1

    Book  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767

    CAS  Google Scholar 

  • Sen AK (2007) Coated textiles: principles and applications. CRC Press

    Google Scholar 

  • Shahidi S, Moazzenchi B (2018) Carbon nanotube and its applications in textile industry—a review. J Text Inst 109(12):1653–1666

    Article  Google Scholar 

  • Shalaev VM, Kawata S (2006) Nanophotonics with surface plasmons. Elsevier

    Google Scholar 

  • Sharma M, Saravolatz LD (2009) 17 severe skin and soft tissue infections in critical care. Infectious disease and therapy, p 295

    Google Scholar 

  • Shen J et al (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47(9):2580–2582. https://doi.org/10.1039/C0CC04812G

    Article  CAS  Google Scholar 

  • Sheshama M et al (2017) Bulk vs. nano ZnO: influence of fire retardant behavior on sisal fibre yarn. Carbohydr Polym 175:257–264

    Article  CAS  Google Scholar 

  • Shim BS et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8(12):4151–4157

    Article  CAS  Google Scholar 

  • Silva IO et al (2019) Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials 9(8):1064

    Article  CAS  Google Scholar 

  • Singh NA (2017) Nanotechnology innovations, industrial applications and patents. Environ Chem Lett 15(2):185–191

    Article  CAS  Google Scholar 

  • Soane D, Offord D, Ware W (2005) Nanotechnology applications in textiles. Wiley Online Library, Jurgen Schulte, p 149

    Google Scholar 

  • Sójka-Ledakowicz J et al (2009) Functionalization of textile materials by alkoxysilane-grafted titanium dioxide. J Mater Sci 44(14):3852–3860

    Article  CAS  Google Scholar 

  • StartNano (no date) Indicators by Countries. Nano-related Indicators. Innovation 2019’. Available at: https://statnano.com/

  • Sun L-W et al (2012) Lanthanum-doped ZnO quantum dots with greatly enhanced fluorescent quantum yield. J Mater Chem 22(17):8221–8227

    Article  CAS  Google Scholar 

  • Sun H et al (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210. https://doi.org/10.1021/nn501640q

    Article  CAS  Google Scholar 

  • Sun X et al (2019) Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping. Molecules 24(2):344. https://doi.org/10.3390/molecules24020344

    Article  CAS  Google Scholar 

  • Tan LY et al (2019) Funtionalization and mechanical propeties of cotton fabric with ZnO nanoparticles for antibacterial textile application. In: Solid state phenomena. Trans Tech Publ, pp 292–297

    Google Scholar 

  • Tchapla A et al (2004) Characterisation of embalming materials of a mummy of the Ptolemaic era. Comparison with balms from mummies of different eras. J Sep Sci 27(3):217–234

    Google Scholar 

  • The New York Times (no date) Responsible party/Dr. David Soane; Armor against Stains. Available at: https://www.nytimes.com/2002/10/13/business/responsible-party-dr-David-soane-armor-against-stains.html

  • Tour JM (2007) Nanotechnology: the passive, active and hybrid sides-gauging the investment landscape from the technology perspective. Nanotech 4:361

    Google Scholar 

  • Tuerhong M, XU Y, Yin X-B (2017) Review on carbon dots and their applications. Chin J Anal Chem 45(1):139–150. https://doi.org/10.1016/S1872-2040(16)60990-8

    Article  Google Scholar 

  • van Lente H, van Til JI (2008) Articulation of sustainability in the emerging field of nanocoatings. J Clean Prod 16(8–9):967–976

    Article  Google Scholar 

  • Vaseem M et al (2012) Synthesis of ZnO nanoparticles and their ink-jetting behavior. J Nanosci Nanotechnol 12(3):2380–2386

    Article  CAS  Google Scholar 

  • Verbič A, Gorjanc M, Simončič B (2019) Zinc oxide for functional textile coatings: recent advances. Coatings 9(9):550

    Article  CAS  Google Scholar 

  • Vigneshwaran N et al (2006) Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17(20):5087

    Article  CAS  Google Scholar 

  • Wang Y-W et al (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6(4):2791–2798

    Article  CAS  Google Scholar 

  • Wijesena RN et al (2015) Slightly carbomethylated cotton supported TiO2 nanoparticles as self-cleaning fabrics. J Mol Catal A Chem 398:107–114. https://doi.org/10.1016/J.MOLCATA.2014.11.012

    Article  CAS  Google Scholar 

  • Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? ACS Publications

    Google Scholar 

  • WMWTA—World Markets for Woven Textiles and Apparel (2009) Textile outlook international, 141

    Google Scholar 

  • Xu B et al (2015) Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf Coat Technol 262:70–76. https://doi.org/10.1016/J.SURFCOAT.2014.12.017

    Article  CAS  Google Scholar 

  • Yang M et al (2019) Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation. Colloids Surf A Physicochem Eng Aspects 570:172–181. https://doi.org/10.1016/J.COLSURFA.2019.03.024

    Article  CAS  Google Scholar 

  • Yetisen AK et al (2016) Nanotechnology in textiles. ACS Nano 10(3):3042–3068

    Article  CAS  Google Scholar 

  • Yu Y et al (2017) Highly fluorescent cotton fiber based on luminescent carbon nanoparticles via a two-step hydrothermal synthesis method. Cellulose 24(4):1669–1677. https://doi.org/10.1007/s10570-017-1230-0

    Article  CAS  Google Scholar 

  • Zahid M et al (2018) Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles. ACS Appl Bio Mater 1(4):1154–1164. https://doi.org/10.1021/acsabm.8b00357

    Article  CAS  Google Scholar 

  • Zeller A, Johnston JH (no date) New fluorescent hybrid materials comprising quantum dots, organic fluorophores and natural fibre substrates

    Google Scholar 

  • Zhai Y et al (2016) Influence of doping alkali metal ions on the structure and luminescent properties of microwave synthesized CaMoO4: Dy3 + phosphors. J Alloys Compd 688:241–247

    Article  CAS  Google Scholar 

  • Zhang G et al (2013) Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose 20(4):1877–1884

    Article  CAS  Google Scholar 

  • Zhao S-W et al (2018) The preparation and antibacterial activity of cellulose/ZnO composite: a review. Open Chem 16(1):9–20

    Article  CAS  Google Scholar 

  • Zhu C et al (2017) Design and characterization of self-cleaning cotton fabrics exploiting zinc oxide nanoparticle-triggered photocatalytic degradation. Cellulose 24(6):2657–2667

    Article  CAS  Google Scholar 

  • Zuo D et al (2019) UV protection from cotton fabrics finished with boron and nitrogen co-doped carbon dots. Cellulose, 1–8. https://doi.org/10.1007/s10570-019-02365-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. O. Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nascimento, J.H.O. et al. (2021). New Advances of the Nanotechnology in Textile Engineering: Functional Finishing with Quantum Dots and Others Nanoparticles. In: Nascimento, R.F.d., Neto, V.d.O.S., Fechine, P.B.A., Freire, P.d.T.C. (eds) Nanomaterials and Nanotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6056-3_8

Download citation

Publish with us

Policies and ethics