Skip to main content

Creating Smart and Functional Textile Materials with Graphene

  • Chapter
  • First Online:
Nanomaterials and Nanotechnology

Abstract

The research and development of graphene-based materials are happening at an intense pace due to their extraordinary physical and chemical properties. Their high electronic mobility, high thermal conductivity, mechanical properties, photoluminescence, among others, made them a wonder material in several research fields. The textile community is aware of this evolution and, therefore, is also taking advantage of the properties of these graphene-based materials for the development of textiles with functionalities that include UV protection, antistatic, antibacterial, photoluminescent finishes, improvement of mechanical properties, flexible supercapacitors, sensors, etc. In this context, this chapter aims to address the main concepts, applications, and perspectives on the application of graphene-based material in the textile area. We will mainly focus on the progressing research using graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi E et al (2016) Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol 44(1):150–156. https://doi.org/10.3109/21691401.2014.927880

    Article  CAS  Google Scholar 

  • Abdelkader AM et al (2017) Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater 4(3):35016

    Google Scholar 

  • Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5(1):10160. https://doi.org/10.1038/srep10160

    Article  CAS  Google Scholar 

  • Afroj S et al (2019) Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 13(4):3847–3857

    Article  CAS  Google Scholar 

  • Bacon M, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Charact 31(4):415–428. https://doi.org/10.1002/ppsc.201300252

    Article  CAS  Google Scholar 

  • Bag S et al (2015) Nitrogen and sulfur dual-doped reduced graphene oxide: synergistic effect of dopants towards oxygen reduction reaction. Electrochim Acta 163:16–23. https://doi.org/10.1016/J.ELECTACTA.2015.02.130

    Article  CAS  Google Scholar 

  • Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587. https://doi.org/10.1038/nchem.686

    Article  CAS  Google Scholar 

  • Bassalo JMF, Farias RF (2017) Prêmio Nobel de 2016: Química e Física. Caderno Brasileiro de Ensino de Física 34(2):479. https://doi.org/10.5007/2175-7941.2017v34n2p479

    Article  Google Scholar 

  • Bolotin KI et al (2008) Temperature-dependent transport in suspended graphene. Phys Rev Lett 101(9):096802. https://doi.org/10.1103/PhysRevLett.101.096802

    Article  CAS  Google Scholar 

  • Bonaldi RR (2018) Functional finishes for high-performance apparel. In: High-performance apparel, pp 129–156

    Google Scholar 

  • Bunch JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462. https://doi.org/10.1021/nl801457b

    Article  CAS  Google Scholar 

  • Cai G et al (2017) Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci 393:441–448. https://doi.org/10.1016/J.APSUSC.2016.10.046

    Article  CAS  Google Scholar 

  • Cay A, Tarakçıoğlu I, Hepbasli A (2009) Assessment of finishing processes by exhaustion principle for textile fabrics: an exergetic approach. Appl Therm Eng 29(11–12):2554–2561

    Article  CAS  Google Scholar 

  • Chen M, Haddon Robert C et al (2017) Advances in transferring chemical vapour deposition graphene: a review. Mater Horiz 4(6):1054–1063. https://doi.org/10.1039/C7MH00485K

    Article  CAS  Google Scholar 

  • Chen W et al (2019) Green synthesis of graphene quantum dots from cotton cellulose. ChemistrySelect 4(10):2898–2902. https://doi.org/10.1002/slct.201803512

    Article  CAS  Google Scholar 

  • Chiarelli PA et al (2001) Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv Mater 13(15):1167–1171

    Article  CAS  Google Scholar 

  • Cho J et al (2001) Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv Mater 13(14):1076–1078

    Article  CAS  Google Scholar 

  • Choudhury AKR (2017) Principles of textile finishing. Woodhead, Kidlington

    Google Scholar 

  • Cole RM et al (2015) Evanescent-field optical readout of graphene mechanical motion at room temperature. Phys Rev Appl 3(2):024004. https://doi.org/10.1103/PhysRevApplied.3.024004

    Article  CAS  Google Scholar 

  • Conway R (2016) Coating of textiles. In: Horrocks AR, Anand SC (eds) Handbook of technical textiles. Elsevier

    Google Scholar 

  • Cranston ED, Gray DG (2006) Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 7(4):319

    Article  CAS  Google Scholar 

  • Daniele MA et al (2015) Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv Healthc Mater 4(1):11–28

    Article  CAS  Google Scholar 

  • David M et al (2015) Acidic and basic functionalized carbon nanomaterials as electrical bridges in enzyme loaded chitosan/poly (styrene sulfonate) self-assembled layer-by-layer glucose biosensors. Electroanalysis 27(9):2139–2149

    Article  CAS  Google Scholar 

  • Dubas ST, Schlenoff JB (1999) Factors controlling the growth of polyelectrolyte multilayers. Macromolecules 32(24):8153–8160

    Article  CAS  Google Scholar 

  • Estillore NC, Advincula RC (2011) Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP. Langmuir 27(10):5997–6008

    Article  CAS  Google Scholar 

  • Fu J et al (2019) Layer-by-Layer electrostatic self-assembly silica/graphene oxide onto carbon fiber surface for enhance interfacial strength of epoxy composites. Mater Lett 236:69–72

    Article  CAS  Google Scholar 

  • Gan L et al (2015) Graphene nanoribbon coated flexible and conductive cotton fabric. Compos Sci Technol 117:208–214

    Article  CAS  Google Scholar 

  • Gill AK et al (2020) Mussel-inspired UV protective organic coatings via layer-by-layer assembly. Eur Polymer J 124:109455

    Article  CAS  Google Scholar 

  • Golja B, Šumiga B, Forte Tavčer P (2013) Fragrant finishing of cotton with microcapsules: comparison between printing and impregnation. Color Technol 129(5):338–346

    Article  CAS  Google Scholar 

  • Guex LG et al (2017) Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27):9562–9571. https://doi.org/10.1039/C7NR02943H

    Article  CAS  Google Scholar 

  • He Y et al (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohyd Polym 88(3):1100–1108. https://doi.org/10.1016/j.carbpol.2012.01.071

    Article  CAS  Google Scholar 

  • Heo J et al (2020) Spray-assisted layer-by-layer self-assembly of tertiary-amine-stabilized gold nanoparticles and graphene oxide for efficient CO2 capture. J Membr Sci 117905

    Google Scholar 

  • Heo J, Choi M, Hong J (2019) Facile surface modification of polyethylene film via spray-assisted layer-by-layer self-assembly of graphene oxide for oxygen barrier properties. Sci Rep 9(1):1–7

    Article  CAS  Google Scholar 

  • Hong X et al (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16(21):4022–4027

    Article  CAS  Google Scholar 

  • Hoogeveen NG et al (1996) Formation and stability of multilayers of polyelectrolytes. Langmuir 12(15):3675–3681

    Article  CAS  Google Scholar 

  • Huang G et al (2012) Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric. Ind Eng Chem Res 51(38):12355–12366

    Article  CAS  Google Scholar 

  • Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21(6):569–594. https://doi.org/10.1016/0095-8522(66)90018-3

    Article  CAS  Google Scholar 

  • Inagaki M et al (2013) Advanced materials science and engineering of carbon. Butterworth-Heinemann

    Google Scholar 

  • Inagaki M et al (2014) Advanced materials science and engineering of carbon. Elsevier. https://doi.org/10.1016/C2012-0-03601-0

    Article  Google Scholar 

  • Izquierdo A et al (2005) Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21(16):7558–7567

    Article  CAS  Google Scholar 

  • Ji X et al (2016) Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos A Appl Sci Manuf 87:29–45. https://doi.org/10.1016/j.compositesa.2016.04.011

    Article  CAS  Google Scholar 

  • Ji Y, Chen G, Xing T (2019) Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide. Appl Surf Sci 474:203–210

    Article  CAS  Google Scholar 

  • Joshi M, Butula B (2013) Application technologies for coating, lamination and finishing of technical textiles. In: Gulrajani M (ed) Advances in the dyeing and finishing of technical textiles. Elsevier Science, p 448

    Google Scholar 

  • Karim N, Afroj S, Malandraki A et al (2017a) All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J Mater Chem C 5(44):11640–11648

    Article  CAS  Google Scholar 

  • Karim N, Afroj S, Tan S et al (2017b) Scalable production of graphene-based wearable e-textiles. ACS Nano 11(12):12266–12275

    Article  CAS  Google Scholar 

  • Karimi L et al (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21(5):3813–3827

    Article  CAS  Google Scholar 

  • Kaur M, Kaur M, Sharma VK (2018) Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment. Adv Coll Interface Sci 259:44–64. https://doi.org/10.1016/j.cis.2018.07.001

    Article  CAS  Google Scholar 

  • Khan U et al (2012) High strength composite fibres from polyester filled with nanotubes and graphene. J Mater Chem 22(25):12907–12914. https://doi.org/10.1039/c2jm31946b

    Article  CAS  Google Scholar 

  • Khanafer K, Vafai K (2017) Analysis of the anomalies in graphene thermal properties. Int J Heat Mass Transfer 104:328–336. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.07.103

    Article  CAS  Google Scholar 

  • Khose RV et al (2018) Novel approach towards the synthesis of carbon-based transparent highly potent flame retardant. Carbon 139:205–209. https://doi.org/10.1016/j.carbon.2018.06.049

    Article  CAS  Google Scholar 

  • Kolesnikova TA et al (2010) Nanocomposite microcontainers with high ultrasound sensitivity. Adv Func Mater 20(7):1189–1195. https://doi.org/10.1002/adfm.200902233

    Article  CAS  Google Scholar 

  • Kulandaivalu S, Sulaiman Y (2019) Recent advances in layer-by-layer assembled conducting polymer based composites for supercapacitors. Energies 12(11):2107

    Article  CAS  Google Scholar 

  • Kumbhakar Partha et al (2018) In-situ synthesis of rGO-ZnO nanocomposite for demonstration of sunlight driven enhanced photocatalytic and self-cleaning of organic dyes and tea stains of cotton fabrics. J Hazard Mater 360:193–203

    Article  CAS  Google Scholar 

  • Kuo W-S et al (2017) Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 120:185–194. https://doi.org/10.1016/J.BIOMATERIALS.2016.12.022

    Article  CAS  Google Scholar 

  • Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. https://doi.org/10.1126/science.1157996

  • Lee KS et al (2017) Transparent nanofiber textiles with intercalated ZnO@ graphene QD LEDs for wearable electronics. Compos B Eng 130:70–75

    Article  CAS  Google Scholar 

  • Li B et al (2018) A flexible humidity sensor based on silk fabrics for human respiration monitoring. J Mater Chem C 6(16):4549–4554. https://doi.org/10.1039/c8tc00238j

    Article  CAS  Google Scholar 

  • Li X et al (2019) Design and development of layer-by-layer based low-pressure antifouling nanofiltration membrane used for water reclamation. J Membr Sci 584:309–323

    Article  CAS  Google Scholar 

  • Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. https://doi.org/10.1039/C4CS00269E

    Article  CAS  Google Scholar 

  • Lin L et al (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  • Liu H et al (2018) Differently-charged graphene-based multilayer films by a layer-by-layer approach for oxygen gas barrier application. Compos B Eng 155:391–396

    Article  CAS  Google Scholar 

  • Ma L et al (2012) Layer-by-layer self-assembly under high gravity field. Langmuir 28(25):9849–9856

    Article  CAS  Google Scholar 

  • Masae M (2018) Hydrophobic and antibacterial activity of silk textile surfaces using reduced graphene oxide (RGO) and TiO2 coating. J Mater Sci Appl Energy 7(3):307–316

    Google Scholar 

  • Miankafshe MA, Bashir T, Persson N-K (2019) The role and importance of surface modification of polyester fabrics by chitosan and hexadecylpyridinium chloride for the electrical and electro-thermal performance of graphene-modified smart textiles. New J Chem 43(17):6643–6658

    Article  Google Scholar 

  • Munz M et al (2015) Thickness-dependent hydrophobicity of epitaxial graphene. ACS Nano 9(8):8401–8411. https://doi.org/10.1021/acsnano.5b03220

    Article  CAS  Google Scholar 

  • Muzyka R et al (2017) Oxidation of graphite by different modified hummers methods. New Carbon Mater 32(1):15–20. https://doi.org/10.1016/S1872-5805(17)60102-1

    Article  Google Scholar 

  • Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76(18):5370–5378

    Article  CAS  Google Scholar 

  • Nault L et al (2010) Cell transfection using layer-by-layer (LbL) coated calixarene-based solid lipid nanoparticles (SLNs). Chem Commun 46(30):5581–5583

    Article  CAS  Google Scholar 

  • Nishiguchi A et al (2011) Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater 23(31):3506–3510

    Article  CAS  Google Scholar 

  • Noi KF et al (2015) Assembly-controlled permeability of layer-by-layer polymeric microcapsules using a tapered fluidized bed. ACS Appl Mater Interfaces 7(50):27940–27947

    Article  CAS  Google Scholar 

  • Nooralian Z, Parvinzadeh Gashti M, Ebrahimi I (2016) Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facile spray layer-by-layer assembly. RSC Adv 6(28):23288–23299. https://doi.org/10.1039/c6ra00296j

    Article  CAS  Google Scholar 

  • Ocepek B et al (2012) Printing of antimicrobial microcapsules on textiles. Color Technol 128(2):95–102

    Article  CAS  Google Scholar 

  • Ogi T et al (2014) Transient nature of graphene quantum dot formation via a hydrothermal reaction. RSC Adv 4(99):55709–55715. https://doi.org/10.1039/C4RA09159K

    Article  CAS  Google Scholar 

  • Pan N et al (2018) Fabrication of cotton fabrics through in-situ reduction of polymeric N-halamine modified graphene oxide with enhanced ultraviolet-blocking, self-cleaning, and highly efficient, and monitorable antibacterial properties. Colloids Surf A 555:765–771

    Article  CAS  Google Scholar 

  • Pang Y et al (2018) Facile preparation of N-doped graphene quantum dots as quick-dry fluorescent ink for anti-counterfeiting. New J Chem 42(20):17091–17095

    Article  CAS  Google Scholar 

  • Patel PA, Dobrynin AV, Mather PT (2007) Combined effect of spin speed and ionic strength on polyelectrolyte spin assembly. Langmuir 23(25):12589–12597

    Article  CAS  Google Scholar 

  • Patil PO et al (2016) Facile green synthesis of reduced graphene oxide and fabrication of layer by layer self-assembled rGO@ chitosan@ rGO@ folic acid nanocomposite for possible biosensing application. J Bionanosci 10(2):150–157

    Article  CAS  Google Scholar 

  • Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896. https://doi.org/10.1039/C5CS00021A

    Article  CAS  Google Scholar 

  • Picart C et al (2001) Buildup mechanism for poly (L-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17(23):7414–7424

    Article  CAS  Google Scholar 

  • Poortavasoly H, Montazer M, Harifi T (2014) Simultaneous synthesis of nano silver and activation of polyester producing higher tensile strength aminohydroxylated fiber with antibacterial and hydrophilic properties. RSC Adv 4(86):46250–46256. https://doi.org/10.1039/C4RA04835K

    Article  CAS  Google Scholar 

  • Putri LK et al (2015) Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci 358:2–14. https://doi.org/10.1016/J.APSUSC.2015.08.177

    Article  CAS  Google Scholar 

  • Qi A et al (2011) Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication. ACS Nano 5(12):9583–9591

    Article  CAS  Google Scholar 

  • Qu D et al (2015) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Reports 4(1):5294. https://doi.org/10.1038/srep05294

    Article  CAS  Google Scholar 

  • Rajasekar R et al (2013) Electrostatically assembled layer-by-layer composites containing graphene oxide for enhanced hydrogen gas barrier application. Compos Sci Technol 89:167–174

    Article  CAS  Google Scholar 

  • Ramasamy T et al (2014) Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater 10(12):5116–5127

    Article  CAS  Google Scholar 

  • Ramsden J (2016) Nanotechnology: an introduction. William Andrew

    Google Scholar 

  • Rao CNR, Gopalakrishnan K, Govindaraj A (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9(3):324–343. https://doi.org/10.1016/J.NANTOD.2014.04.010

    Article  CAS  Google Scholar 

  • Razza S et al (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4(9):91508

    Article  CAS  Google Scholar 

  • Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):aaa2491

    Google Scholar 

  • Richardson JJ et al (2016) Innovation in layer-by-layer assembly. Chem Rev 116(23):14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

    Article  CAS  Google Scholar 

  • Ristic BZ et al (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15):4428–4435. https://doi.org/10.1016/J.BIOMATERIALS.2014.02.014

    Article  CAS  Google Scholar 

  • Sanes J et al (2020) Extrusion of polymer nanocomposites with graphene and graphene derivative nanofillers: an overview of recent developments. Materials 13(3):549

    Article  CAS  Google Scholar 

  • Seo J et al (2008) Effect of the layer-by-layer (LbL) deposition method on the surface morphology and wetting behavior of hydrophobically modified PEO and PAA LbL films. Langmuir 24(15):7995–8000

    Article  CAS  Google Scholar 

  • Sha’rani SS et al (2019) Improving the redox flow battery performance of low-cost thin polyelectrolyte membranes by layer-by-Layer Surface assembly. J Power Sources 413:182–190

    Article  CAS  Google Scholar 

  • Shakir I (2014) High energy density based flexible electrochemical supercapacitors from layer-by-layer assembled multiwall carbon nanotubes and graphene. Electrochim Acta 129:396–400

    Article  CAS  Google Scholar 

  • Shao F et al (2016) Fabrication of polyaniline/graphene/polyester textile electrode materials for flexible supercapacitors with high capacitance and cycling stability. Chem Asian J 11(13):1906–1912

    Google Scholar 

  • Sharma D et al (2011) Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method. Appl Surf Sci 257(22):9661–9672

    Article  CAS  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME (2013) Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose 20(2):963–972

    Article  CAS  Google Scholar 

  • Shim BS et al (2007) Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett 7(11):3266–3273

    Article  CAS  Google Scholar 

  • Shiratori SS, Yamada M (2000) Nano-scale control of composite polymer films by mass-controlled layer-by-layer sequential adsorption of polyelectrolytes. Polym Adv Technol 11(8–12):810–814

    Article  CAS  Google Scholar 

  • Some S et al (2015) Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem Eur J 21(44):15480–15485

    Google Scholar 

  • Song W et al (2019) Graphene oxide/waterborne polyurethane composites for fine pattern fabrication and ultrastrong ultraviolet protection cotton fabric via screen printing. Appl Surf Sci 463:403–411

    Article  CAS  Google Scholar 

  • Srivastava S, Kotov NA (2008) Layer-by-layer (LBL) assembly with semiconductor nanoparticles and nanowires. In: Semiconductor nanocrystal quantum dots, pp 197–216

    Google Scholar 

  • Stan MS et al (2019) Reduced graphene oxide/TiO2 nanocomposites coating of cotton fabrics with antibacterial and self-cleaning properties. J Ind Text 49(3):277–293

    Article  CAS  Google Scholar 

  • Sun H et al (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210. https://doi.org/10.1021/nn501640q

    Article  CAS  Google Scholar 

  • Sun H et al (2016) Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv Mater 28(38):8431–8438

    Article  CAS  Google Scholar 

  • Sun R et al (2020) A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Elsevier, Joule

    Book  Google Scholar 

  • Tang X, Yan X (2017) Dip-coating for fibrous materials: mechanism, methods and applications. J Sol-Gel Sci Technol 81(2):378–404

    Article  CAS  Google Scholar 

  • Tas M et al (2019) Graphene and graphene oxide-coated polyamide monofilament yarns for fiber-shaped flexible electrodes. J Text Inst 110(1):67–73

    Article  CAS  Google Scholar 

  • Tawiah B, Howard EK, Asinyo B (2016) The chemistry of inkjet inks for digital textile printing—review. BEST 4:61–78

    Google Scholar 

  • Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242. https://doi.org/10.1016/J.CARBON.2015.06.030

    Article  CAS  Google Scholar 

  • Thomas IM (1987) Single-layer TiO2 and multilayer TiO2–SiO2 optical coatings prepared from colloidal suspensions. Appl Opt 26(21):4688–4691

    Article  CAS  Google Scholar 

  • Tian M et al (2015) Robust ultraviolet blocking cotton fabric modified with chitosan/graphene nanocomposites. Mater Lett 145:340–343

    Article  CAS  Google Scholar 

  • Tissera ND et al (2015) Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating. Appl Surf Sci 324:455–463

    Article  CAS  Google Scholar 

  • Voiry D et al (2016) High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science (New York, N.Y.) 353(6306):1413–1416. https://doi.org/10.1126/science.aah3398

  • Wang Y et al (2011) Coupling electrodeposition with layer-by-layer assembly to address proteins within microfluidic channels. Adv Mater 23(48):5817–5821

    Article  CAS  Google Scholar 

  • Wang L et al (2016) Mechanism of boron and nitrogen in situ doping during graphene chemical vapor deposition growth. Carbon 98:633–637. https://doi.org/10.1016/J.CARBON.2015.11.058

    Article  CAS  Google Scholar 

  • Wang L et al (2020) Effects of three fabric weave textures on the electrochemical and electrical properties of reduced graphene/textile flexible electrodes. RSC Adv 10:6249–6258

    Article  CAS  Google Scholar 

  • Wardman RH (2018) An introduction to textile coloration: principles and practice. Wiley, Pondicherry

    Google Scholar 

  • Wong KK (2018) Synthesis of nitrogen-doped graphene quantum dots and its antibacterial property. The Hong Kong Polytechnic University

    Google Scholar 

  • Xie M et al (2019) Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surf, B 176:462–470

    Article  CAS  Google Scholar 

  • Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43(16):6716–6723. https://doi.org/10.1021/ma1009337

    Article  CAS  Google Scholar 

  • Yamada M et al (2012) Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33(33):8304–8315

    Article  CAS  Google Scholar 

  • Yang Y et al (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29(19):1606679

    Article  CAS  Google Scholar 

  • Yang X et al (2019) Surface modification of poly (p-phenylene terephthalamide) fibers by polydopamine-polyethyleneimine/graphene oxide multilayer films to enhance interfacial adhesion with rubber matrix. Polym Testing 78:105985

    Article  CAS  Google Scholar 

  • Yazdi GR, Iakimova T, Yakimova R (2018) Fabrication of graphene by thermal decomposition of SiC. In: Epitaxial graphene on silicon carbide. Jenny Stanford Publishing, pp 63–109, https://doi.org/10.1201/9781315186146-3

  • Ye S et al (2005) Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. J Biomater Sci Polym Ed 16(7):909–923

    Article  CAS  Google Scholar 

  • Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715. https://doi.org/10.1039/C5TA00252D

    Article  CAS  Google Scholar 

  • Yu S et al (2015) Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorg Chem Frontiers 2(7):593–612. https://doi.org/10.1039/C4QI00221K

    Article  CAS  Google Scholar 

  • Yuan B et al (2016) Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon 101:152–158. https://doi.org/10.1016/J.CARBON.2016.01.080

    Article  CAS  Google Scholar 

  • Yun YJ et al (2013) A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics. Adv Mater 25(40):5701–5705

    Article  CAS  Google Scholar 

  • Zahid M et al (2017) Strain-responsive mercerized conductive cotton fabrics based on PEDOT:PSS/graphene. Mater Des 135:213–222. https://doi.org/10.1016/j.matdes.2017.09.026

    Article  CAS  Google Scholar 

  • Zhang B, Cui T (2011) An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Appl Phys Lett 98(7):73116

    Article  CAS  Google Scholar 

  • Zhang D, Tong J, Xia B (2014) Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens Actuators B Chem 197:66–72

    Article  CAS  Google Scholar 

  • Zhao J et al (2013) Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater 2(9):1259–1266

    Article  CAS  Google Scholar 

  • Zhao H et al (2018) Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route. J Mater Sci 53(13):9504–9520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. O. Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nascimento, J.H.O. et al. (2021). Creating Smart and Functional Textile Materials with Graphene. In: Nascimento, R.F.d., Neto, V.d.O.S., Fechine, P.B.A., Freire, P.d.T.C. (eds) Nanomaterials and Nanotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6056-3_13

Download citation

Publish with us

Policies and ethics