Skip to main content

Generality of Hybridization of Graphene: From Design to Applications

  • Chapter
  • First Online:
Graphene and Nanoparticles Hybrid Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 386 Accesses

Abstract

Currently, the research and development in the field of graphene, graphene oxide and reduced graphene oxide and its combination with several nanoparticles has accrued an extensive attention in scientific research field in both academic and industrial. The hybridization is considered as a best process which is incorporating graphene nanosheets with various nanoparticles such as nanoclays, silver nanoparticles, carbon nanotubes and many others. The obtained materials are well-known as a hybride nanocomposites that characterized by their excellent properties and high performances which are related to the properties of both graphene and nanoparticles. These outstanding properties make hydride nanocomposite a great candidate for potential applications in different areas including, materials science and engineering, medicine and biology, energy storage and environmental remediation. Herein, this chapter gives you an idea about the various derivatives of graphene and their functional hybride materials, followed by the detailed introduction on graphene- nanostructures hybrids. The present chapter reveals the interest from the hybridization of graphene derivatives with different nanoparticles. After a brief introduction about graphene and its importance in nontechnology field. In the second part, we give you some basic information about graphene its preparation, characterization and the nanocomposites made from graphene. The third part concerns the hybride nanocomposites made up from graphene with various nanostructures. It also includes industrial and practical application of graphene-nanoparticles hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong L, Chen Q (2010) Properties, synthesis, and characterization of graphene. Front Mater Sci China 2010(4):45–51

    Article  Google Scholar 

  2. Liu M, Zhong H, Yun L, Samal K (2016) Synthesis, characterization, and antibacterial properties of Silver Nanoparticles-Graphene and Graphene Oxide Composites, Biotechnol. Bioprocess Eng 18:1–18

    Google Scholar 

  3. Selvakumar G, Krishna Bhat M, Manish Aggarwal D, Prahladh Iyer A, Sravani S (2010) Nano ZnO-activated carbon composite electrodes for supercapacitors, Phys B Phys Condens Matter 405:2286–2289

    Google Scholar 

  4. Raphael E, Tan MTT, Sim P, Wee C (2014) One-step green synthesis of graphene / ZnO nanocomposites for electrochemical capacitors. Ceram Int 41:715–724

    Google Scholar 

  5. Liu J (2012) Adsorption of DNA onto gold nanoparticles and graphene oxide : surface science and applications. Phys Chem C Hem P Hys 14:10485–10496

    Google Scholar 

  6. Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose / graphene nanocomposite films prepared in DMAC / LiCl solution. Carbohydr Polym 88:26–30

    Article  CAS  Google Scholar 

  7. Alam S, Nizam B, Maksudul U (2016) Synthesis of graphene. Int Nano Lett 6:65–83

    Article  Google Scholar 

  8. Bipasha FA (2015) A review of functionalized Graphene properties and its application a review of functionalized Graphene properties and its application 2

    Google Scholar 

  9. Ions D, Mechanical E, Cross-linking PC, Park S, Lee K, Bozoklu G, Cai W, Nguyen ЌST, Ruoff RS (2008) Graphene Oxide papers modified by divalent Ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:578–578

    Google Scholar 

  10. Zhu BY, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and Graphene Oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  11. Zheng W, Wong S, Sue H (2002) Transport behavior of PMMA / expanded graphite nanocomposites. Polyhedron 73:6767–6773

    Google Scholar 

  12. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem Rev 116:5464–5519

    Article  CAS  Google Scholar 

  13. Yu Z, Sun S, Huang M (2016) Electrodeposition of Gold Nanoparticles on Electrochemically Reduced Graphene Oxide for High Performance Supercapacitor Electrode Materials. Int J Electrochem Sci 11:3643–3650

    Article  CAS  Google Scholar 

  14. Jing Y, Lin Y, Su E, Liu X, Li Y, Yuan H, … Fan X (2016) Electrodeposition of Au nanoparticles on poly (diallyldimethylammonium chloride) functionalized reduced graphene oxide sheets for voltammetric determination of nicotine in tobacco products and anti-smoking pharmaceuticals. RSC Adv 0:1–3

    Google Scholar 

  15. Rajendra Prasad N, Munichandraiah K (2002) Electrooxidation of methanol on polyaniline without dispersed catalyst particles. J Power Sources 103:300–304

    Google Scholar 

  16. Moradi Golsheikh CY, Huang A, Lim NM, Zakaria HN, Yin R (2016) One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection, Carbon NY 62:405–412

    Google Scholar 

  17. Eredia P, Bertolazzi M, Leydecker S, El Garah T, Janica M, Melinte I, Samorì G (2017) Morphology and electronic properties of electrochemically exfoliated Graphene. Physiccal Chem Lett 8:3347–3355

    Google Scholar 

  18. Munuera JMD, Paredes JM, Enterría JI, Pagán M, Villar-Rodil A, Pereira S, … Tascón MFR (2017) Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. ACS Appl Mater Interfaces 9:24085–24099

    Google Scholar 

  19. Song H, Xu J, Xing L, Li R, Zhou Q, Liu C, Song S (2014) Synthesis of Au / Graphene Oxide composites for selective and sensitive electrochemical detection of Ascorbic. Sci Rep 4:1–7

    Google Scholar 

  20. Yin Z, Tang H, Wang H, Gao D, Tang Y (2012) Facile synthesis of surfactant-free Au Cluster/Graphene Hybrids for high- performance Oxygen reduction reaction. ACS Nano 6:8288–8297

    Google Scholar 

  21. Gurunathan JH, Han S, Park JW, Kim JH, Choi JS, Kwon YJ, Kim DN (2015) Reduced graphene oxide—silver nanoparticle nanocomposite : a potential anticancer nanotherapy. Int J Nanomedicine 10:6257–6276

    Google Scholar 

  22. Nethravathi C, Anumol EA, Rajamathi M, Ravishankar N (2011) Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene : formation mechanism and electrocatalytic activity †. Nanoscale 3:569–571

    Article  CAS  Google Scholar 

  23. Sutter PW, Flege J, Sutter ELIA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411

    Article  CAS  Google Scholar 

  24. Norimatsu W, Kusunok M (2014) Epitaxial graphene on SiC{0001}: advances and perspectives., Chem Chem Phys 16:3501–3511

    Google Scholar 

  25. Guermoune M, Chari A, Popescu T, Sabri F, Guillemette SS, Skulason J, … Siaj S (2011) Chemical vapor deposition synthesis of graphene on copper with methanol , ethanol , and propanol precursors, Carbon N. Y 49:4204–4210

    Google Scholar 

  26. Parvez K, Yang S, Feng X, Müllen K (2015) Exfoliation of graphene via wet chemical routes. Synth Met 210:123–132

    Article  CAS  Google Scholar 

  27. Khan JN, O’Neill U, Lotya A, De M, Coleman S (2010) High-concentration solvent Exfoliation of Graphene. Small 6:864–871

    Google Scholar 

  28. Zhong YL, Swager TM (2012) Enhanced electrochemical expansion of Graphite for in situ electrochemical functionalization. J Am Chem Soc 134:17896–17899

    Article  CAS  Google Scholar 

  29. Cai HC, Thorpe M, Adamson D, Schniepp DH (2012) Methods of graphite exfoliation. J Mater Chem 22:24992–25002

    Google Scholar 

  30. Gautham Krishnaiah VV (2012) Process for the preparation of Graphite Oxde and Graphene sheets, US 2012/0128570 A1

    Google Scholar 

  31. Gao HM, Ren L, Li W, Cheng F (2008) Total color difference for rapid and accurate identification of Graphene. ACS Nano 2:1625–1633

    Google Scholar 

  32. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of Graphene Nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  33. Ichinokura S, Sugawara S, Takayama K, Takahashi A, Hasegawa T (2016) Superconducting Calcium-Intercalated Bilayer Graphene. ACS Nano 10:2761–2765

    Google Scholar 

  34. Monetta T, Acquesta A, Bellucci F (2015) Graphene/Epoxy Coating as multifunctional material for aircraft structures. Aerospace 2:423–434

    Article  Google Scholar 

  35. Zhang W, Yi M, Shen Z (2013) Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance. J Mater Sci 48:2416–2423

    Article  CAS  Google Scholar 

  36. Zhang Z, Zhang W, Li D, Sun Y, Wang Z, Hou C (2015) Mechanical and anticorrosive properties of Graphene / Epoxy Resin composites coating prepared by in-situ method. Int J Mol Sci 16:2239–2251

    Article  CAS  Google Scholar 

  37. Shen W, Zhai B, Lu W, Wang D, Zheng J (2012) Ultrasonication-assisted direct functionalization of graphene with macromolecules. RSC Adv 2:4713–4719

    Google Scholar 

  38. Fang S, Wang M, Lu K, Yang H, Nutt Y (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105

    Google Scholar 

  39. John KR, Crain M, Lettow JS (2017) Fuel system components. US 9,625,062 B2

    Google Scholar 

  40. Alam SN, Sharma N, Kumar L (2017) Synthesis of Graphene Oxide ( GO ) by modified hummers method and its thermal reduction to obtain Reduced Graphene Oxide ( rGO ) *. Sci Res Publ 6:1–18

    CAS  Google Scholar 

  41. Park RS, An S, Potts J, Velamakanni JR, Murali A, Ruoff S (2011) Hydrazine-reduction of graphite- and graphene oxide, Carbon NY 49:3019–3023

    Google Scholar 

  42. Xu G, Hong Y, Bai W, Li H, Shi C (2009) Strong and ductile poly (vinyl alcohol )/ graphene oxide composite films with a layered structure, Carbon NY 47:3538–3543

    Google Scholar 

  43. Yang X, Tu X, Li Y, Shang L, Tao S (2010) Well-dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl Mater Interfaces 2:1707–1713

    Google Scholar 

  44. Stankovich RS, Dikin S, Dommett DA, Kohlhaas GHB, Zimney KM, Stach EJ, … Ruoff EA (2006) Graphene-based composite materials. Nat Lett 442:282–286

    Google Scholar 

  45. Kim CW, Miura H, Macosko Y (2010) Graphene / Polyurethane Nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    Google Scholar 

  46. Kim H, Macosko CW (2008) Morphology and properties of Polyester / Exfoliated Graphite Nanocomposites. Macromolecules 41:3317–3327

    Article  CAS  Google Scholar 

  47. Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate / graphene composites. Polymer (Guildf) 50:3797–3809

    Article  CAS  Google Scholar 

  48. Kim CW, Kobayashi H, AbdurRahim S, Zhang MA, Khusainova MJ, Hillmyer A, … Macosko MA (2011) Graphene / polyethylene nanocomposites : Effect of polyethylene functionalization and blending methods, Polymer (Guildf) 52:1837–1846

    Google Scholar 

  49. Nasibulin AG, Nasibulin EI, Pikhitsa AG, Jiang PV, Brown H, Krasheninnikov DP, Anisimov AV, … Kauppinen AS (2007) A novel hybrid carbon material, Letters 2:156–161

    Google Scholar 

  50. Parker JT, Raut CB, Brown AS, Stoner B, Glass BR (2012) Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res 27:1046–1053

    Google Scholar 

  51. Varshney G, Venkateswara Rao D, Guinel C, Ishikawa MJF, Weiner Y, Morell BR (2013) Free standing graphene-diamond hybrid films and their electron emission properties. J Appl Phys 110:44324

    Google Scholar 

  52. Contreras Jiménez M, Eissa G, Ng S, Alhadrami A, Zourob H, Siaj M (2014) Aptamer-based label-free impedimetric biosensor for the detection of Progesterone. Anal Chem 87:1075–1082

    Google Scholar 

  53. Krueger BA (2008) Diamond nanoparticles : jewels for chemistry and physics. Adv Mater 20:2445–2449

    Article  CAS  Google Scholar 

  54. Liu X, Yin M, Ulin-Avila X, Geng E, Zentgraf B, Ju T, … Zhang L (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Google Scholar 

  55. Wang W, Cui Q, Chen X, Zheng J, Liu X, Xue C, … Zheng T (2012) Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Adv 2:6245–6249

    Google Scholar 

  56. Yong Y, Ma J, Zhao XS, Zhang J, Xiong Z (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. Chem J Mater 21:3350–3352

    Google Scholar 

  57. Marta S, Potara B, Iliut M, Jakab M, Radu E, Imre-Lucaci T, … Astilean F (2015) Designing chitosan–silver nanoparticles-graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus, Elsevier B.V. 487:113–120

    Google Scholar 

  58. Li D, Kuang J, Feng D, Zhang Y, Xu F, Liu Z, Wang M (2013) Green synthesis of silver nanoparticles—graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens Bioelectron 42:198–206

    Google Scholar 

  59. Wang Z, Zhao C, Li M, Yu J, Sun J, Ge S, … Guo S (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer (Guildf) 131:263–271

    Google Scholar 

  60. Han Y, Miao K, Tong P, Liu H, Cheng T, Zhu W, Tang X (2014) Preparation of silver nanoparticles / graphene nanosheets as a catalyst for electrochemical oxidation of methanol. Appl Phys Lett 104:53101

    Google Scholar 

  61. Badhulika A, Terse-Thakoor S, Villarreal T, Mulchandani C (2015) Graphene hybrids : synthesis strategies and applications in sensors and sensitized solar cells. Front Chem 3:38

    Google Scholar 

  62. Lee SO, Maiti WJ, Lee UN, Lim JM, Han J, Kim TH (2014) Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun 50:6818–6830

    Google Scholar 

  63. Sheka EF, Chernozatonskii LA (2010) Graphene-carbon nanotube composites. J Comput Theor Nanosci 7:1814–1824

    Article  CAS  Google Scholar 

  64. Chao Z, Tianxi LIU (2012) A review on hybridization modification of graphene and its polymer nanocomposites. Chin Sci Bull 57:3010–3021

    Article  Google Scholar 

  65. Fan T (2017) Wei, Zhang. Longsheng, Liu, Graphene-Carbon nanotube hybrids for energy and environmental applications, Springer Nature

    Google Scholar 

  66. Fan W, Liu T, Zhang C, Huang S, Tjiu WW (2012) Facile preparation of water-dispersible graphene sheets stabilized by. J Mater Chem 22:2427–2434

    Google Scholar 

  67. Chen Y, Qiu X, Ding M, Fu H, Fan K (2016) A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8:5696–5705

    Google Scholar 

  68. Cooper HD, Ravich CA, Lips D, Mayer D, Wagner J (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci Technol 62

    Google Scholar 

  69. Ouyang Y, Sun W, Memon J, Wang J, Geng C, Huang J (2013) Scalable preparation of three-dimensional porous structures of reduced graphene oxide / cellulose composites and their application in supercapacitors, Carbon N. Y. 62:501–509

    Google Scholar 

  70. Soheilmoghaddam RT, Pasbakhsh M, Wahit P, Bidsorkhi MU, Pour HC, Whye RH, De Silva WT (2014) Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid, Polymer (Guildf) 55:3130–3138

    Google Scholar 

  71. Peng Q, Meng H, Niu L, Lu L (2012) Simultaneous reduction and surface functionalization of Graphene Oxide by natural cellulose with the assistance of the Ionic Liquid. J Phys Chem C 116:16294–16299

    Google Scholar 

  72. Yun S, Kim J (2009) Sensors and Actuators a : physical covalently bonded multi-walled carbon nanotubes-cellulose electro-active paper actuator. Sensors Actuators A 154:73–78

    Article  CAS  Google Scholar 

  73. Kafy J, Sadasivuni A, Kim KK, Akther HC, Kim A (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931

    Google Scholar 

  74. Scott CL, Pumera M (2011) Nanogold spacing of stacked Graphene Nanofibers for Supercapacitors. Electroanalysis 23:858–861

    Article  CAS  Google Scholar 

  75. Güneş YH, Shin F, Biswas HJ, Han C, Kim GH, Chae ES, … Lee SJ (2010) Layer-by-layer doping of few-layer. ACS Nano 4:4595–4600

    Google Scholar 

  76. Lütfi M, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide : Application to selective determination of tyrosine in milk. Sensors Actuators B Chem 210:149–157

    Article  Google Scholar 

  77. Wang Y, Zhang Y, Du S, Shao D, Li Y, Wang Z, … Lin J (2011) Self assembly of acetylcholinesterase on a gold nanoparticles—graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker †. J Mater Chem 21:5319–5325

    Google Scholar 

  78. Mao J, Lu S, Yu G, Bo K, Chen Z (2010) Specifi c Protein detection using thermally reduced Graphene Oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–3526

    Google Scholar 

  79. Nazim MF, Kousar S, Shahid T, Khan M, Nasar MA, Sher G, Warsi M (2016) New graphene-Co x Zn 1 À x Fe 2 O 4 nano-heterostructures : magnetically separable visible light photocatalytic materials. Ceram Int 42:1–8

    Google Scholar 

  80. Javed MF, Rehman H, Mussadiq A, Shahid S, Khan M, Shakir MA, … Warsi I (2019) Reduced graphene oxide-spinel ferrite nano-hybrids as magnetically separable and recyclable visible light driven photocatalyst. Synth Met 254:1–9

    Google Scholar 

  81. Wu H, Zhao J, Chen H, Pham-Huy R, Hui C, He X (2016) Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater. J Chromatogr B 1029–1030:106–112

    Google Scholar 

  82. Qiu J, Deng B, Du Y, Xing M, Zhang M (2016) Ultradispersed Cobalt Ferrite nanoparticles assembled in Graphene Aerogel for continuous Photo-Fenton reaction and enhanced Lithium storage performance. Nat Publ Gr 6:29099

    Google Scholar 

  83. Ruiz-Hitzky E, Sobral MM, Gómez-Avilés A, Nunes C, Ruiz-García C, Ferreira P, Aranda P (2016) Clay-Graphene Nanoplatelets functional conducting composites. Adv Funct Mater 26:7394–7405

    Google Scholar 

  84. Fukushima P, Murariu K, Camino M, Dubois G (2010) Effect of expanded graphite / layered-silicate clay on thermal , mechanical and fi re retardant properties of poly ( lactic acid ). Polym Degrad Stab 95:1063–1076

    Google Scholar 

  85. Longun J, Walker G, Iroh JO (2013) Surface and mechanical properties of graphene—clay / polyimide composites and thin films. Carbon N. Y. 63:9–22

    Article  CAS  Google Scholar 

  86. Li L, Li C, She Y, Vongsvivut X, Li J, She J, … Kong F (2015) Reinforcement and deformation behaviors of polyvinyl alcohol / graphene / montmorillonite clay composites. Compos Sci Technol 118:1–8

    Google Scholar 

  87. Václav Štengl PV, Popelková D (2011) TiO2 À Graphene Nanocomposite as high performace Photocatalysts. J Phys Chem 115:25209–25218

    Google Scholar 

  88. Shao F, Tian P, Shi J, Gao W, Cui S (2015) Eco-friendly one-pot synthesis of ultradispersed TiO2 nanocrystals/graphene nanocomposites with high photocatalytic activity for dye degradation. Mater Chem A 3:19913–19919

    Google Scholar 

  89. Zhang M, Cao F, Yue H, Zhang D, Qu J (2012) Enhanced Anode Performances of Polyaniline—TiO2—reduced Graphene Oxide Nanocomposites for Lithium Ion Batteries. Inorg Chem 54:9544−9551

    Google Scholar 

  90. Sun J, Liu M, Liu H, Qu Y, Li J (2015) Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 7:1250–1269

    Google Scholar 

  91. Wang Z, Gao J, Li Z, Wang Z, Yan B, Liu Y, … Jiang Q (2011) Green thesis of graphene nanosheets / ZnO composites and electrochemical properties. J Solid State Chem 184:1421–1427

    Google Scholar 

  92. Zhao W, Liu Y, Cui L, Tong T, Wu G (2017) Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition. Appl Surf Sci 412:58–68

    Google Scholar 

  93. Peng D, Ji Y, Chen J (2015) Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Appl Surf Sci 356:762–768

    Google Scholar 

  94. Yi J, Lee JM, Il Park W (2011) Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens Act B Chem 155:264–269

    Google Scholar 

  95. Li H, Wang X, Zhao Q, Wu Y, Chen W, Meng J (2013) Green synthesis and photo-catalytic performances for ZnO-Reduced Graphene Oxide Nanocomposites. J Colloid Interface Sci 411:69–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Bouhfid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Bourakadi, K., Mekhzoum, M.E.M., Qaiss, A.e.k., Bouhfid, R. (2021). Generality of Hybridization of Graphene: From Design to Applications. In: Qaiss, A.e.K., Bouhfid, R., Jawaid, M. (eds) Graphene and Nanoparticles Hybrid Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-33-4988-9_1

Download citation

Publish with us

Policies and ethics