Skip to main content

Rheological Properties of Hybrid Nanocomposites Based on Graphene and Other Nanoparticles

  • Chapter
  • First Online:

Part of the book series: Composites Science and Technology ((CST))

Abstract

The development of promising nanomaterials is mainly associated with their use in industrial applications, medicine, biology and ecology. Many of the existing materials may not satisfy all the modern civilization fundamental requirements, leading researchers to develop hybrid materials that may present higher properties than the individual components. Hybrid graphene nanocomposites have attracted much attention recently because of their unique structure and remarkable mechanical, electrical, thermal and rheological properties. The main attention in this chapter is firstly focused on the graphene-based hybrid nanocomposites, their different types, synthesis methods and application fields. Then on the rheological properties of graphene-based hybrid materials, in order to quantify the dispersion of hybrid nanofillers in polymer matrices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang C, Liu TX (2012) A review on hybridization modification of graphene and its polymer nanocomposites. Chin Sci Bull 57(23):3010–3021

    Article  CAS  Google Scholar 

  2. Hu C, Lu T, Chen F, Zhang R (2013) A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. J Chin Adv Mater Soc 1(1):21–39

    Article  CAS  Google Scholar 

  3. Dmitriev AS (2019) Hybrid graphene nanocomposites: thermal interface materials and functional energy materials. Graph Prod Appl [Working Title], 1–23

    Google Scholar 

  4. Jawaid M, el Kacem Qaiss A, Bouhfid R (2016) Nanoclay reinforced polymer composites: natural fibre/nanoclay hybrid composites. Eng Mater (July), 301

    Google Scholar 

  5. Ouarhim W, Semlali Aouragh Hassani F-Z, el Kacem Qaiss A, Bouhfid R (2019) Rheology of polymer nanocomposites. In: Rheology of polymer blends and nanocomposites theory, modelling and applications, pp 73–96

    Google Scholar 

  6. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872

    Article  CAS  Google Scholar 

  7. Semlali Aouragh Hassani F-Z, Ouarhim W, Zari N, Bouhfid R, el Kacem Qaiss A (2019) Natural fiber-based biocomposites. In: Biodegradable composites materials, manufacturing and engineering, pp 49–79

    Google Scholar 

  8. Semlali Aouragh Hassani F-Z et al (2019) Injection molding of short coir fiber polypropylene biocomposites: prediction of the mold filling phase. Polym Compos 40(10):4042–4055

    Article  CAS  Google Scholar 

  9. Semlali Aouragh Hassani F-Z et al (2019) Mechanical properties prediction of polypropylene/short coir fibers composites using a self-consistent approach. Polym Compos 40(5):1919–1929

    Article  CAS  Google Scholar 

  10. Berthelot J (1999) Matériaux composites, comportement et analyse des structures. Edition TEC & DOC, Cachan

    Google Scholar 

  11. Liste des termes, expressions et définitions adoptés et publiés au Journal officiel de la République française, vocabulaire des polymères, J.O., 01 mars 2002. Lexique de la recherche clinique et de la médecine factuelle

    Google Scholar 

  12. Coll MW et al (2015) Les nanotechnologies. Edition Dunod, Paris (2003)

    Google Scholar 

  13. Semlali Aouragh Hassani F-Z et al (2019) N-silylated benzothiazolium dye as a coupling agent for polylactic acid/date palm fiber bio-composites. J Polym Environ 0123456789

    Google Scholar 

  14. Semlali Aouragh Hassani F-Z, El Bourakadi K, Merghoub N, el Kacem Qaiss A, Bouhfid R (2020) Effect of chitosan/modified montmorillonite coating on the antibacterial and mechanical properties of date palm fiber trays. Int J Biol Macromol 148:316–323

    Google Scholar 

  15. Jenkins EW (1973) The polymorphism of elements and compounds. Methuen, London

    Google Scholar 

  16. Heilig ML (1994) United States patent office. ACM SIGGRAPH Comput Graph 28(2):131–134

    Article  Google Scholar 

  17. Grigorieva IV, Firsov AA, Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  18. Kroto RE, Heath HW, O’Brien JR, Curl SC, Smalley RF (1985) C60 buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  19. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  20. Moissan H (1894) Nouvelles expériences sur la reproduction du diamant. C R Acad Sci 118:320–326

    Google Scholar 

  21. Wakabayashi M, Fujita K, Ajiki M, Sigrist H (1999) Electronic and magnetic properties of nanographite ribbons. Phys Rev B Condens Matter Mater Phys 59(12):8271–8282

    Article  CAS  Google Scholar 

  22. Iijima F, Yudasaka S, Yamada M, Bandow R, Suenaga S, Kokai K, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-homs. Chem Phys Lett 309(3–4):165–170

    Article  CAS  Google Scholar 

  23. Naess SN, Elgsaeter A, Helgesen G, Knudsen KD (2009) Carbon nanocones: wall structure and morphology. Sci Technol Adv Mater 10(6):1–6

    Article  CAS  Google Scholar 

  24. Morgan P (2005) Carbon fibers and their composites. Taylor & Francis Group, CRC Press, USA

    Book  Google Scholar 

  25. Wallace PR (1947) The band theory of graphite. Phys Rev 71(9):452–457

    Article  Google Scholar 

  26. Landau LD, Lifshitz EM (1967) Theory of elasticity, vol 7. Ouvrage, Editions MIR, Moscou

    Google Scholar 

  27. Schedin F et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Article  CAS  Google Scholar 

  28. Reddy CD, Rajendran S, Liew KM (2006) Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3):864–870

    Article  CAS  Google Scholar 

  29. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science (80-) 321(5887):385–388

    Google Scholar 

  30. Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  31. Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Article  CAS  Google Scholar 

  32. Chang CW, Liao YC (2016) Accelerated sedimentation velocity assessment for nanowires stabilized in a non-Newtonian fluid. Langmuir 32(51):13620–13626

    Article  CAS  Google Scholar 

  33. Kulkarni HB, Tambe P, Joshi GM (2018) Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Compos Interfaces 25(5–7):381–414

    Article  CAS  Google Scholar 

  34. Patil U et al (2015) Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16):6999–7021

    Article  CAS  Google Scholar 

  35. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525

    Article  CAS  Google Scholar 

  36. Bourlinos AB, Georgakilas V, Zboril R, Sterioti TA, Stubos AK (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845

    Article  CAS  Google Scholar 

  37. Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  CAS  Google Scholar 

  38. Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411

    Article  CAS  Google Scholar 

  39. Sanchez C, Ribot F, Rozes L, Alonso B (2000) Design of hybrid organic-inorganic nanocomposites synthesized via sol–gel chemistry. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 354(Dec 2013):143–158

    Article  CAS  Google Scholar 

  40. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Angew Chem (Int Ed Engl) 39(Suppl 15):19–52

    Google Scholar 

  41. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  42. Dizhbite T et al (2007) Elaboration and characterization of organic/inorganic hybrid nanoporous material incorporating Keggin-type Mo–Si polyanions. J Phys Conf Ser 93(1):012011

    Article  CAS  Google Scholar 

  43. Vaia RA, Emmanuel P (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26(5):394–401

    Article  CAS  Google Scholar 

  44. Schöllhorn R (1996) Intercalation systems as nanostructured functional materials. Chem Mater 8(8):1747–1757

    Article  Google Scholar 

  45. Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30(25):7990–7999

    Article  CAS  Google Scholar 

  46. Komori Y, Sugahara Y, Kuroda K (1998) A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite. J Mater Res 13(4):930–934

    Article  CAS  Google Scholar 

  47. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63

    Article  Google Scholar 

  48. Carrado KA, Xu L (1998) In situ synthesis of polymer–clay nanocomposites from silicate gels. Chem Mater 10(5):1440–1445

    Article  CAS  Google Scholar 

  49. Aranda P, Ruiz-Hitzky E (1999) Poly(ethylene oxide)/NH4+-smectite nanocomposites. Appl Clay Sci 15(1–2):119–135

    Article  CAS  Google Scholar 

  50. Kikuta K, Ohta K, Takagi K (2002) Synthesis of transparent magadiite-silica hybrid monoliths. Chem Mater 14(7):3123–3127

    Article  CAS  Google Scholar 

  51. Leu CM, Wu ZW, Wei KH (2002) Synthesis and properties of covalently bonded layered silicates/polyimide (BTDA-ODA) nanocomposites. Chem Mater 14(7):3016–3021

    Article  CAS  Google Scholar 

  52. Mukkanti K, Subba Rao YV, Choudary BM (1989) Selective and sequential reduction of nitroaromatics by montmorillonitesilylaminepalladium(II) complex. Tetrahedron Lett. 30(2):251–252

    Article  CAS  Google Scholar 

  53. Caillère S, Hénin S, Rautureau M (1982) Minéralogie des argiles, tome 1: structure et propriétés physico-chimiques, 2nd edn. Masson

    Google Scholar 

  54. Caillère S, Hénin S, Rautureau M (1982) Minéralogie des argile, tome 2: classification et nomenclature, 2nd edn. Masson

    Google Scholar 

  55. Nasibulin AG et al (2007) A novel hybrid carbon material. Nat Nanotechnol 2(3):156–161

    Article  CAS  Google Scholar 

  56. Parker CB, Raut AS, Brown B, Stoner BR, Glass JT (2012) Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res 27(7):1046–1053

    Article  CAS  Google Scholar 

  57. JT Group (2012) James’ bond: a graphene/nanotube hybrid. Physorg, 27–29

    Google Scholar 

  58. Lan G et al (2019) Defective graphene@diamond hybrid nanocarbon material as an effective and stable metal-free catalyst for acetylene hydrochlorination. Chem Commun 55(10):1430–1433

    Article  CAS  Google Scholar 

  59. Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45(3):715–752

    Article  CAS  Google Scholar 

  60. Krueger A (2008) Diamond nanoparticles: jewels for chemistry and physics. Adv Mater 20(12):2445–2449

    Article  CAS  Google Scholar 

  61. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  CAS  Google Scholar 

  62. Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polym (Guildf) 46(20):8641–8660

    Article  CAS  Google Scholar 

  63. Koo CM, Kim MJ, Choi MH, Kim SO, Chung IJ (2003) Mechanical and rheologaical properties of the maleated PP-layaerd silicate nanocomposites with different morphology. J Appl Polym Sci 88:1526–1535

    Article  CAS  Google Scholar 

  64. Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Disorientation kinetics of aligned polymer layered silicate nanocomposites. Macromolecules 36(11):4188–4194

    Article  CAS  Google Scholar 

  65. Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33(10):3739–3746

    Article  CAS  Google Scholar 

  66. Jeon HS, Rameshwaram JK, Kim G, Weinkauf DH (2003) Characterization of polyisoprene—clay nanocomposites prepared by solution blending. Polym (Guildf) 44(19):5749–5758

    Article  CAS  Google Scholar 

  67. Jeon HS, Rameshwaram JK, Kim G (2004) Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J Polym Sci Part B Polym Phys 42:1000–1009

    Article  CAS  Google Scholar 

  68. Luengo G, Schmitt FJ, Hill R, Israelachvili J (1997) Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30(8):2482–2494

    Article  CAS  Google Scholar 

  69. Lim YT, Park OO (2000) Rheological evidence for the microstructure of intercalated polymer/layered silicate nanocomposites. Macromol Rapid Commun 21(5):231–235

    Article  CAS  Google Scholar 

  70. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34(4):852–858

    Article  CAS  Google Scholar 

  71. Wu D, Zhou C, Hong Z, Mao D, Bian Z (2005) Study on rheological behaviour of poly(butylene terephthalate)/ montmorillonite nanocomposites. Eur Polym J 41(9):2199–2207

    Article  CAS  Google Scholar 

  72. Dae Han C, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polym (Guildf) 34(12):2533–2539

    Article  Google Scholar 

  73. Lee KM, Han CD (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules 36(19):7165–7178

    Article  CAS  Google Scholar 

  74. Gelfer MY et al (2005) Relationships between structure and rheology in model nanocomposites of ethylene-vinyl-based copolymers and organoclays. Macromolecules 38(9):3765–3775

    Article  CAS  Google Scholar 

  75. Hyun YH, Lim ST, Choi HJ, John MS (2001) Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 34(23):8084–8093

    Article  CAS  Google Scholar 

  76. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622

    Article  CAS  Google Scholar 

  77. Ren J, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36(12):4443–4451

    Article  CAS  Google Scholar 

  78. Wagener R, Reisinger TJG (2003) A rheological method to compare the degree of exfoliation of nanocomposites. Polym (Guildf) 44(24):7513–7518

    Article  CAS  Google Scholar 

  79. Zhan Y, Meng F, Yang X, Liu X (2011) Magnetite-graphene nanosheets (GNs)/poly(arylene ether nitrile) (PEN): fabrication and characterization of a multifunctional nanocomposite film. Colloid Surf A Physicochem Eng Asp 390(1–3):112–119

    Article  CAS  Google Scholar 

  80. Mekhzoum MEM, Essabir H, Rodrigue D, el Kacem Qaiss A (2016) Graphene/montmorillonite hybrid nanocomposites based on polypropylene: morphological, mechanical, and rheological properties. Polym Compos 39(6):1–8

    Google Scholar 

  81. Sun X, Wu Q, Zhang J, Qing Y, Wu Y, Lee S (2017) Rheology, curing temperature and mechanical performance of oil well cement: combined effect of cellulose nanofibers and graphene nano-platelets. Mater Des 114:92–101

    Article  CAS  Google Scholar 

  82. Nanda J, Biswas A, Adhikari B, Banerjee A (2013) A gel-based trihybrid system containing nanofibers, nanosheets, and nanoparticles: modulation of the rheological property and catalysis. Angew Chem Int Ed 52(19):5041–5045

    Article  CAS  Google Scholar 

  83. Zhang Y, Park SJ (2018) Influence of the nanoscaled hybrid based on nanodiamond@graphene oxide architecture on the rheological and thermo-physical performances of carboxylated-polymeric composites. Compos Part A Appl Sci Manuf 112:356–364

    Article  CAS  Google Scholar 

  84. Arjmand M, Sadeghi S, Khajehpour M, Sundararaj U (2017) Carbon nanotube/graphene nanoribbon/polyvinylidene fluoride hybrid nanocomposites: rheological and dielectric properties. J Phys Chem C 121(1):169–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abou el Kacem Qaiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semlali Aouragh Hassani, FZ., Bouhfid, R., Qaiss, A. (2021). Rheological Properties of Hybrid Nanocomposites Based on Graphene and Other Nanoparticles. In: Qaiss, A.e.K., Bouhfid, R., Jawaid, M. (eds) Graphene and Nanoparticles Hybrid Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-33-4988-9_11

Download citation

Publish with us

Policies and ethics