Skip to main content

Downstream Processing of Biofuels

  • Chapter
  • First Online:
Bioenergy Research: Basic and Advanced Concepts

Abstract

The rapid reduction in the availability of petroleum and the impact these related fuels have on the atmosphere have contributed to a growing use of biofuels. Biorefineries promise to transform biomass accurately into biofuels and bioproducts in the expedition for sustainable utilization of energy which is renewable. Separation and purification stage are also termed as downstream processing which is indeed quite critical for manufacturing high-quality biofuel. Separation and purification methods can also be categorized as equilibrium, affinity-dependent, membrane, solid-liquid, and reaction-driven separation processes depending on the complexity of their operation. This chapter discusses various ancient tactics, recent advances while linking and conflicting the diverse methods of downstream processing of first, second, and third generation of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66:631–653. https://doi.org/10.1016/j.rser.2016.07.015

    Article  CAS  Google Scholar 

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. In: Progress in energy and combustion science. Pergamon, New York. https://doi.org/10.1016/j.pecs.2006.08.003

    Chapter  Google Scholar 

  • Alfafara CG, Nakano K, Nomura N, Igarashi T, Matsumura M (2002) Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 77(8):871–876

    Article  CAS  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410

    Article  CAS  Google Scholar 

  • Amelio A, Van der Bruggen B, Lopresto C, Verardi A, Calabro V, Luis P (2016) Pervaporation membrane reactors: biomass conversion into alcohols. In: Membrane technologies for biorefining. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-100451-7.00014-1

    Chapter  Google Scholar 

  • Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. In: Progress in energy and combustion science. Elsevier, Amsterdam. https://doi.org/10.1016/j.pecs.2014.10.003

    Chapter  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. In: Renewable and sustainable energy reviews. Elsevier, Amsterdam. https://doi.org/10.1016/j.rser.2014.09.037

    Chapter  Google Scholar 

  • Bateni H, Saraeian A, Able C (2017) A comprehensive review on biodiesel purification and upgrading. Biofuel Res J 4(3):668–690. https://doi.org/10.18331/BRJ2017.4.3.5

    Article  CAS  Google Scholar 

  • Belyaev A, Trifonov SA, Mushtaev V (2003) Flow-merge phenomenon during pervaporation separation of multicomponent mixtures. Chem Pet Eng 39:638–641. https://doi.org/10.1023/B:CAPE.0000017598.09736.33

    Article  CAS  Google Scholar 

  • Bello RH, Linzmeyer P, Franco CMB, Souza O, Sellin N, Medeiros SHW, Marangoni C (2014) Pervaporation of ethanol produced from banana waste. Waste Manag 34(8):1501–1509

    Article  CAS  Google Scholar 

  • Bharathiraja B, Jayamuthunagai J, Sudharsanaa T, Bharghavi A, Praveenkumar R, Chakravarthy M, Devarajan Y (2017) Biobutanol—an impending biofuel for future: a review on upstream and downstream processing techniques. Renew Sustain Energy Rev 68:788–807. https://doi.org/10.1016/j.rser.2016.10.017

    Article  Google Scholar 

  • Bitton G, Fox JL, Strickland HG (1975) Removal of algae from Florida lakes by magnetic filtration. Appl Microbiol 30(6):905–908

    Article  CAS  Google Scholar 

  • Bosma R, Van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153. https://doi.org/10.1023/A:1023807011027

    Article  Google Scholar 

  • Callegari A, Bolognesi S, Cecconet D, Capodaglio AG (2020) Production technologies, current role, and future prospects of biofuels feedstocks: a state-of-the-art review. Crit Rev Environ Sci Technol 50(4):384–436

    Article  CAS  Google Scholar 

  • Casey JL, Bartlett E, Howard N, Urrestarazu M, Burés S, Jefas M et al (2011) Informing the decision makers on the cost and value of green building. J Food Agric Environ 28(October):315–324. https://doi.org/10.1080/096132100418474

    Article  Google Scholar 

  • Chang, H., Yuan, X. G., Tian, H., & Zeng, A. W. (2006). Experimental investigation and modeling of adsorption of water and ethanol on cornmeal in an ethanol-water binary vapor system. Chemical engineering & technology: industrial chemistry-plant equipment-process engineering-biotechnology, Weinheim: Wiley 29(4), 454–461

    Google Scholar 

  • Cheng YL, Juang YC, Liao GY, Tsai PW, Ho SH, Yeh KL, Chen CY, Chang JS, Liu JC, Chen WM, Lee DJ (2011) Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour Technol 102(1):82–87

    Article  CAS  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Chen WH, Lin BJ, Huang MY, Chang JS (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. In: Bioresource technology. Elsevier, Amsterdam. https://doi.org/10.1016/j.biortech.2014.11.050

    Chapter  Google Scholar 

  • Cutzu R, Bardi L (2017) Production of bioethanol from agricultural wastes using residual thermal energy of a cogeneration plant in the distillation phase. Fermentation 3(2):24

    Article  CAS  Google Scholar 

  • Cysewski GR, Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol Bioeng 19:1125–1143

    Article  CAS  Google Scholar 

  • Dahman Y, Syed K, Begum S, Roy P, Mohtasebi B (2019) Biofuels: their characteristics and analysis. In: Biomass, biopolymer-based materials, and bioenergy: construction, biomedical, and other industrial applications. Elsevier, Amsterdam, pp 277–325. https://doi.org/10.1016/B978-0-08-102426-3.00014-X

    Chapter  Google Scholar 

  • Devi GK, Chozhavendhan S, Jayamuthunagai J, Bharathiraja B, Praveen Kumar R (2019) Conversion of biomass to methanol and ethanol. In: Horizons in bioprocess engineering. Springer, Cham, pp 61–72. https://doi.org/10.1007/978-3-030-29069-6_4

    Chapter  Google Scholar 

  • Diaz VHG, Tost GO (2018) Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation. Bioprocess Biosyst Eng 41(3):395–405

    Article  CAS  Google Scholar 

  • Edzwald J (1993) Algae, bubbles coagulants, and dissolved air flotation. Water Sci Technol 27(10):67–81

    Article  CAS  Google Scholar 

  • Faiz A, Weaver CS, Walsh MP (1996) Air pollution from motor vehicles: standards and technologies for controlling emissions. The World Bank

    Google Scholar 

  • Felgueira D, Toth E, Gonzalez Penã H, Coupard V, Gama Freire F (2015) Downstream processing and in situ product recovery techniques of isopropanol and butanol production from biomass

    Google Scholar 

  • Fullarton D, Schlünder EU (1986) Diffusion distillation-a new separation process for azeotropic mixtures part 1: selectivity and transfer. Chem Eng Process 20(5):255–263

    Article  CAS  Google Scholar 

  • Gashaw A, Lakachew A (2014) Production of biodiesel from non edible oil and its properties. International Journal of Science, Environment and Technology 3(4):1544–1562

    Google Scholar 

  • Gavahian M, Munekata PES, EÅŸ I, Lorenzo JM, Mousavi Khaneghah A, Barba FJ (2019) Emerging techniques in bioethanol production: from distillation to waste valorization. Green Chem 21(6):1171–1185. https://doi.org/10.1039/c8gc02698j

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  Google Scholar 

  • Gulalkayi VS, Unakal CG, Kaliwa BB (2012) Biotechnological production of ethanol by Saccharomyces cerevisiae, using different substrates. J Pharm Sci Innov 1(6):13–17

    Google Scholar 

  • Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240. https://doi.org/10.1016/j.rser.2013.10.017

    Article  CAS  Google Scholar 

  • Haselden GG (1958) An approach to minimum power consumption in low temperature gas separation. Trans Inst Chem Eng 36:123–132

    Google Scholar 

  • Ibrahim H (2013) Biofuel for sustainable (and eco-friendly). Energy Dev 2:1584–1594

    Google Scholar 

  • Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Yang JW (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31(6):862–876

    Article  CAS  Google Scholar 

  • Kimura S, Nomura T (1982) Pervaporation of alcohol-water mixtures with silicone rubber membrane. Membranes 7(6):353–354

    Article  CAS  Google Scholar 

  • Kovarik B (1998) Henry ford, Charles Kettering and the ‘fuel of the future,’. Automotive. Hist Rev 32:7–27

    Google Scholar 

  • Kraemer K, Harwardt A, Bronneberg R, Marquardt W (2011) Separation of butanol from acetone-butanol-ethanol fermentation by a hybrid extraction-distillation process. Comput Chem Eng 35(5):949–963. https://doi.org/10.1016/j.compchemeng.2011.01.028

    Article  CAS  Google Scholar 

  • Kumar PS, Ramakrishnan K, Kirupha SD, Sivanesan S (2010) Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Braz J Chem Eng 27(2):347–355

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  • Kumar R, Ghosh AK, Pal P (2019) Sustainable production of biofuels through membrane-integrated systems. Sep Purif Rev 49:207–228. https://doi.org/10.1080/15422119.2018.1562942

    Article  CAS  Google Scholar 

  • Lassmann T, Kravanja P, Friedl A (2014) Simulation of the downstream processing in the ethanol production from lignocellulosic biomass with ASPEN plus® and IPSEpro. Energ Sustain Soc 4:27. https://doi.org/10.1186/s13705-014-0027-3

    Article  Google Scholar 

  • Lee Y, Kim S (1988) Hydrophilic/hydrophobic IPN membranes for the pervaporation of ethanol-water mixture. Polym Bull 20(3):261. https://doi.org/10.1007/bf00261979

    Article  CAS  Google Scholar 

  • Levin GV, Clendenning JR, Gibor A, Bogar FD (1962) Harvesting of algae by froth flotation. Appl Microbiol 10:169–175. https://doi.org/10.1128/aem.10.2.169-175.1962

    Article  CAS  Google Scholar 

  • Lipnizki F (2010) Membrane process opportunities and challenges in the bioethanol industry. Desalination 250(3):1067–1069

    Article  CAS  Google Scholar 

  • Mariano AP, Qureshi N, Maciel Filho R, Ezeji TC (2012) Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. J Chem Technol Biotechnol 87(3):334–340

    Article  CAS  Google Scholar 

  • Michael K, Steffi N, Peter D (2011) The past, present, and future of biofuels—biobutanol as promising alternative. In: Biofuel production-recent developments and prospects. IntechOpen, London. https://doi.org/10.5772/20113

    Chapter  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12(2):165–178

    Article  Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3:153–165. https://doi.org/10.1016/j.ijsbe.2014.04.006

    Article  Google Scholar 

  • Moheimani NR, Parlevliet D, McHenry MP, Bahri PA, de Boer K (2015) Past, present and future of microalgae cultivation developments. In: Biomass and biofuels from microalgae. Springer, Cham, pp 1–18. https://doi.org/10.1007/978-3-319-16640-7_1

    Chapter  Google Scholar 

  • Mollah MY, Morkovsky P, Gomes JA, Kesmez M, Parga J, Cocke DL (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114(1–3):199–210

    Article  CAS  Google Scholar 

  • Moreira VR, Rocha Lebron YA, Freire SJ, Palladino F, de Souza Santos LV, Jacob RS (2019) Evaluation of rice bran as a supplement for production of sbioethanol by Saccharomyces cerevisiae. Floresta e Ambiente, 26(Spe 2). https://doi.org/10.1590/2179-8087.042318

  • Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res 98:192–208. https://doi.org/10.1016/j.antiviral.2013.03.008

    Article  CAS  Google Scholar 

  • Nakao SI, Saitoh F, Asakura T, Toda K, Kimura S (1987) Continuous ethanol extraction by pervaporation from a membrane bioreactor. J Membr Sci 30(3):273–287

    Article  CAS  Google Scholar 

  • Nigiz FU, Hilmioglu ND (2016) Pervaporative desalination of seawater by using composite and blended poly (vinyl alcohol) membranes. Desalin Water Treat 57(11):4749–4755

    Article  CAS  Google Scholar 

  • OECD (2011) Nuclear science shielding aspects of accelerators, targets and irradiation facilities-SATIF 10: workshop proceedings. OECD Publishing, Geneva, Switzerland. 2–4 June 2010

    Book  Google Scholar 

  • Oluyede EO, Phillips JN (2007) Fundamental impact of firing syngas in gas turbines. In: Turbo expo: power for land, sea, and air, vol 47926, pp 175–182

    Google Scholar 

  • Pal P, Kumar R, Ghosh AK (2018) Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energ Conver Manage 171(March):371–383. https://doi.org/10.1016/j.enconman.2018.05.099

    Article  CAS  Google Scholar 

  • Park B-G (2004) Pervaporation characteristics of polyetherimide/γ-alumina composite membrane for a quaternary equilibrium mixture of acetic acid-ethanol-ethyl acetate-water. Korean J Chem Eng 21(4):882–889. https://doi.org/10.1007/bf02705534

    Article  CAS  Google Scholar 

  • Plessas S, Bekatorou A, Koutinas AA, Soupioni M, Banat IM, Marchant R (2007) Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic. Bioresour Technol 98:860–865

    Article  CAS  Google Scholar 

  • Ponce GHSF, Alves M, Miranda JC, Maciel Filho R, Maciel MRW (2015) Using an internally heat-integrated distillation column for ethanol–water separation for fuel applications. Chem Eng Res Des 95:55–63

    Article  CAS  Google Scholar 

  • Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171

    Article  CAS  Google Scholar 

  • Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27(4):215–222

    Article  CAS  Google Scholar 

  • Ramis G, Rossetti I, Tripodi A, Compagnoni M (2017) Diluted bioethanol solutions for the production of hydrogen and ethylene. Chem Eng Trans 57:1663–1668

    Google Scholar 

  • Rasool U, Hemalatha S (2016) A review on bioenergy and biofuels: sources and their production. Braz J Biol Sci 3(5):3–22

    Article  Google Scholar 

  • Rezania S, Oryani B, Park J, Hashemi B, Yadav KK, Kwon EE et al (2019) Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energ Conver Manage 201:112155. https://doi.org/10.1016/j.enconman.2019.112155

    Article  CAS  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39(4):183–190

    Article  CAS  Google Scholar 

  • Sarkar D, Shimizu K (2015) An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresour Bioprocess 2(1):17. https://doi.org/10.1186/s40643-015-0045-9

    Article  Google Scholar 

  • Shakhashiri BZ (1985) Chemical demonstrations: a handbook for teachers of chemistry vol 2. University of Wisconsin Press

    Google Scholar 

  • Sheehan J (2009) Engineering direct conversion of CO 2 to biofuel. Nat Biotechnol 27(12):1128–1129

    Article  CAS  Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    Article  CAS  Google Scholar 

  • Tavan Y, Shahhosseini S (2016) Feed-splitting as energy-saving technique in the heterogeneous distillation of ethanol–water azeotropes. Energ Technol 4(3):424–428

    Article  CAS  Google Scholar 

  • Torino S, Iodice M, Rendina I, Coppola G (2017) Microfluidic technology for cell hydrodynamic manipulation. AIMS Biophys Am Inst Math Sci. https://doi.org/10.3934/biophy.2017.2.178

  • Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80(6):603–629. https://doi.org/10.1002/jctb.1265

    Article  CAS  Google Scholar 

  • Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2(6):553–588

    Article  CAS  Google Scholar 

  • Wei P, Cheng LH, Zhang L, Xu XH, Chen HL, Gao CJ (2014) A review of membrane technology for bioethanol production. Renew Sustain Energy Rev 30:388e400

    Article  CAS  Google Scholar 

  • Woodley JM, Bisschops M, Straathof AJ, Ottens M (2008) Future directions for in-situ product removal (ISPR). J Chem Technol Biotechnol 83(2):121–123

    Article  CAS  Google Scholar 

  • Zentou H, Abidin ZZ, Yunus R, Biak A, Radiah D, Korelskiy D (2019) Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Profilassi 7(7):458

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, A., Tripathi, A.D., Agarwal, A., Paul, V. (2021). Downstream Processing of Biofuels. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Basic and Advanced Concepts. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4611-6_1

Download citation

Publish with us

Policies and ethics