Skip to main content

Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane

  • Chapter
  • First Online:
Progress in the Science of Functional Dyes

Abstract

In this chapter, chiroptical properties, especially circularly polarized luminescence (CPL) properties of optically active molecules based on planar chiral [2.2]paracyclophane are mainly introduced. In addition, practical optical resolution methods of disubstituted and tetrasubstituted [2.2]paracyclophane molecules are also focused on. The enantiopure [2.2]paracyclophane compounds have been used as chiral building blocks to synthesize the optically active molecules by means of optical resolution. The [2.2]paracyclophane-based molecules are π-stacked molecules, which construct optically active second-ordered structures, such as V-, X-, triangle-shaped, and one-handed double helical structures, due to the orientation of stacked π-electron systems. Photoexcitation allows them to emit bright CPL with good photoluminescence (PL) quantum efficiencies and large dissymmetry factors (glum values). Thus, planar chiral [2.2]paracyclophane is the ideal scaffold to achieve excellent CPL properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aly AA, Brown AB (2009) Asymmetric and fused heterocycles based on [2.2]paracyclophane. Tetrahedron 65:8055–8089

    Article  CAS  Google Scholar 

  • Amako T, Nakabayashi K, Mori T, Inoue Y, Fujiki M, Imai Y (2014) Sign inversion of circularly polarized luminescence by geometry manipulation of four naphthalene units introduced into a tartaric acid scaffold. Chem Commun 50:12836–12839

    Article  CAS  Google Scholar 

  • Bartholomew GP, Bazan GC (2001) Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc Chem Res 34:30–39

    Article  CAS  PubMed  Google Scholar 

  • Bazan GC (2007) Novel organic materials through control of multichromophore interactions. J Org Chem 72:8615–8635

    Article  CAS  PubMed  Google Scholar 

  • Bazan GC, Oldham WJ, Lachicotte RJ, Tretiak S, Chernyak V, Mukamel S (1998) Stilbenoid dimers: dissection of a paracyclophane chromophore. J Am Chem Soc 120:9188–9204

    Article  CAS  Google Scholar 

  • Berova N, Nakanishi K, Woody RW (eds) (2000) Circular dichroism, 2nd edn. Wiley-VCH, Toronto

    Google Scholar 

  • Braddock DC, MacGilp ID, Perry BG (2002) Improved synthesis of (±) -4,12-dohydroxy[2.2]paracyclophane and its enantiomeric resolution by enzymatic methods: plana chiral (r)- and (s)-phanol. J Org Chem 67:8679–8681

    Article  CAS  PubMed  Google Scholar 

  • Brown CJ, Farthing AC (1949) Preparation and structure of di-p-xylylene. Nature 164:915–916

    Article  CAS  Google Scholar 

  • Chem N, Yan B (2018) Recent theoretical and experimental progress in circularly polarized luminescence of small organic molecules. Molecules 23:3376/1–32

    Google Scholar 

  • Chow HF, Low KH, Wong KY (2005) An improved method for the regiospecific synthesis of polysubstituted [2.2]paracyclophanes. Synlett 2130–2134

    Google Scholar 

  • Clayden J (2002) In organolithiums: selectivity for synthesis. Pergamon, Oxford, pp 141–142

    Google Scholar 

  • Cram DJ, Allinger NL (1955) Macro rings. xii. stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc 77:6289–6294

    Article  CAS  Google Scholar 

  • Cram DJ, Steinberg H (1951) Macro rings. i. preparation and spectra of the paracyclophanes. J Am Chem Soc 73:5691–5704

    Article  CAS  Google Scholar 

  • Emeris CA, Oosterhoff LJ (1967) Emission of circularly-polarized radiation by optically-active compounds. 1:129–132

    Google Scholar 

  • Field JE, Muller G, Riehl JP, Venkataraman D (2003) circularly polarized luminescence from bridgedtriarylamine helicenes. J Am Chem Soc 125:11808–11809

    Article  CAS  PubMed  Google Scholar 

  • Fréchet JMJ (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715

    Article  PubMed  Google Scholar 

  • Gibson SE, Knight JD (2003) [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem 1:1256–1269

    Article  CAS  PubMed  Google Scholar 

  • Gleiter R, Hopf H (2004) Modern cyclophane chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Gon M, Morisaki Y, Chujo Y (2015a) Optically active cyclic compounds based on planar chiral [2.2]paracyclophane: extension of the conjugated systems and chiroptical properties. J Mater Chem C 3:521–529

    Article  CAS  Google Scholar 

  • Gon M, Morisaki Y, Chujo Y (2015) Highly emissive circularly polarized luminescence from optically active conjugated dimers consisting of planar chiral [2.2]paracyclophane. Eur J Org Chem 7756–7762

    Google Scholar 

  • Gon M, Kozuka H, Morisaki Y, Chujo Y (2016a) Optically active cyclic compounds based on planar chiral [2.2]paracyclophane: extension of the π-surface with naphthalene units. Asian J Org Chem 5:353–359

    Article  CAS  Google Scholar 

  • Gon M, Morisaki Y, Sawada R, Chujo (2016) Synthesis of optically active x-shaped conjugated compounds and dendrimers based on planar chiral [2.2]paracyclophane, leading to highly emissive circularly polarized luminescence materials. Chem Eur J 22:2291–2298

    Google Scholar 

  • Gon M, Sawada R, Morisaki Y, Chujo (2017) Enhancement and controlling the signal of circularly polarized luminescence based on a planar chiral tetrasubstituted [2.2]paracyclophane framework in aggregation system. Macromolecules 50:1790–1802

    Google Scholar 

  • Gon M, Morisaki Y, Chujo (2017) optically active phenylethene dimers based on planar chiral tetrasubstituted [2.2]paracyclophane. Chem Eur J 23:6323–6329

    Google Scholar 

  • Guyard L, Audebert P (2001) Synthesis and electrochemical polymerization of bis-dithienyl cyclophane. Electrochem Commun 3:164–167

    Article  CAS  Google Scholar 

  • Guyard L, Audebert P, Dolbier WR Jr, Duan JX (2002) Synthesis and electrochemical polymerization of new oligothiophene functionalized fluorocyclophanes. J Electroanal Chem 537:189–193

    Article  CAS  Google Scholar 

  • Haketa Y, Bando Y, Takaishi K, Uchiyama M, Muranaka A, Naito M, Shibaguchi H, Kawai T, Maeda H (2012) Asymmetric induction in the preparation of helical receptor-anion complexes: ion-pair formation with chiral cations. Angew Chem Int Ed 51:7967–7971

    Article  CAS  Google Scholar 

  • Hasegawa M, Kobayakawa K, Matsuzawa H, Nishinaga T, Hirose T, Sako K, Mazaki Y (2017) Chem Eur J 23:3267–3271

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kobayakawa K, Nojima Y, Mazaki Y (2019) Org Biomol Chem 17:8822–8826

    Article  Google Scholar 

  • Hawker CJ, Fréchet JMJ (1990) Preparation of polymers with controlled molecular architecture. a new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    Article  CAS  Google Scholar 

  • Hitchcock PB, Rowlands GJ, Parmar R (2005) The synthesis of enantiomerically pure 4-substituted [2.2]paracyclophane derivatives by sulfoxide–metal exchange. Chem Commun 4219–4221

    Google Scholar 

  • Hopf H (2008) [2.2]paracyclophane in polymer chemistry and materials chemistry. Angew Chem Int Ed 47:2–7

    Article  CAS  Google Scholar 

  • Ishioka S, Hasegawa M, Hara N, Sasaki H, Nojima Y, Imai Y, Mazaki Y (2019) Chiroptical properties of oligophenylenes anchoring with stereogenic [2.2]paracyclophane 48:640–643

    Google Scholar 

  • Jagtap SP, Collard DM (2010) Multitiered 2D π-stacked conjugated polymers based on pseudo-geminal disubstituted [2.2]paracyclophane. J Am Chem Soc 132:12208–12209

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Zhao XL (2004) A simple and efficient resolution of (±)-4,12-dihydroxy[2.2]paracyclophane. Tetrahedron Asym 15:1141–1143

    Article  CAS  Google Scholar 

  • Jones PG, Hillmer J, Hopf H (2003) (S)-4,16-dihydroxymethyl-[2.2]paracyclophane bis-(1s)-camphanoate. Acta Cryst E59:o24–o25

    Google Scholar 

  • Kawai T, Kawamura K, Tsumatori H, Ishikawa M, Naito M, Fujiki M, Nakashima T (2007) Circularly polarized luminescence of a fluorescent chiral binaphthylene-perylenebiscarboxydiimide dimer. Chem Phys Chem 8:1465:1468

    Google Scholar 

  • Kikuchi K, Nakamura J, Nagata Y, Tsuchida H, Kakuta T, Ogoshi T, Morisaki Y (2019) Control of circularly polarized luminescence by orientation of stacked π-electron systems. Chem Asian J 14:1681–1685

    Article  CAS  PubMed  Google Scholar 

  • Kimoto T, Tajima N, Fujiki M, Imai Y (2012) Control of circularly polarized luminescence by using open- and closed-type binaphthyl derivatives with the same axial chirality. Chem Asian J 7:2836–2841

    Article  CAS  PubMed  Google Scholar 

  • Kobayakawa K, Hasegawa M, Sasaki H, Endo J, Matsuzawa H, Sako K, Yoshida J, Mazaki Y (2014) Dimeric tetrathiafulvalene linked to pseudo-ortho-[2.2]paracyclophane: chiral electrochromic properties and use as a chiral dopant. Chem Asian J 9:2751–2754

    Article  CAS  PubMed  Google Scholar 

  • Lunkley JL, Shirotani D, Yamanari K, Kaizaki S, Muller G (2008) Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis(3-heptafluoro-butylryl-(+)-camphorato) Eu(III) complexes in EtOH and CHCl3 Solutions. J Am Chem Soc 130:13814–13815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Bando Y (2013) Recent progress in research on stimuli-responsive circularly polarized luminescence based on π-conjugated molecules. Pure Appl Chem 85:1967–1978

    Article  CAS  Google Scholar 

  • Meyer-Eppler G, Vogelsang E, Benkhäuser C, Schneider A, Schnakenburg G, Lützen A (2013) Synthesis, chiral resolution, and absolute configuration of dissymmetric 4,12-difunctionalized [2.2]paracyclophane. Eur J Org Chem 4523–4532

    Google Scholar 

  • Meyer-Eppler G, Sure R, Schneider A, Schnakenburg G, Grimme S, Lützen A (2014) Synthesis, chiral resolution, and absolute configuration of dissymmetric 4,15-difunctionalized [2.2]paracyclophanes. J Org Chem 79:6679–6687

    Article  CAS  PubMed  Google Scholar 

  • Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  • Mizogami S, Yoshimura S (1985) Synthesis of a new crystalline polymer: polymetacyclophane. J Chem Soc Chem Commun 1736–1738

    Google Scholar 

  • Molina-Ontoria A, Wielopolski M, Gebhardt J, Gouloumis A, Clark T, Guldi DM, Martín N (2011) [2,2’]paracyclophane-based π-conjugated molecular wires reveal molecular-junction behavior. J Am Chem Soc 133:2370–2373

    Article  CAS  PubMed  Google Scholar 

  • Morisaki Y, Chujo Y (2002) Synthesis of novel π-conjugated polymers having [2.2]paracyclophane skeleton in the main chain. extension of π-conjugated length via the through-space. Macromolecules 35:587–589

    Article  CAS  Google Scholar 

  • Morisaki Y, Chujo Y (2006) Through-space conjugated polymers based on cyclophanes. Angew Chem Int Ed 45:6430–6437

    Article  CAS  Google Scholar 

  • Morisaki Y, Chujo Y (2008) cyclophane-containing polymers. Prog Polym Sci 33:346–364

    Article  CAS  Google Scholar 

  • Morisaki Y, Chujo Y (2009) synthesis of π-stacked polymers on the basis of [2.2]paracyclophane. Bull Chem Soc Jpn 82:1070–1082

    Article  CAS  Google Scholar 

  • Morisaki Y, Chujo Y (2011) Through-space conjugated polymers consisting of [2.2]paracyclophane. Polym Chem 2:1249–1257

    Article  CAS  Google Scholar 

  • Morisaki Y, Chujo Y (2012) π-electron-system-layered polymers based on [2.2]paracyclophane. Chem Lett 41:840–846

    Article  CAS  Google Scholar 

  • Morisaki Y, Chujo Y (2019) Planar chiral [2.2]paracyclophanes: optical resolution and transformation to optically active π-stacked molecules. Bull Chem Soc Jpn 92:265–274

    Article  CAS  Google Scholar 

  • Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y (2012a) T practical optical resolution of planar chiral pseudo-ortho-disubstituted [2.2]paracyclophane. Chem Lett 41:990–992

    Article  CAS  Google Scholar 

  • Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y (2012b) Through-space conjugated polymers consisting of planar chiral pseudo-ortho-linked [2.2]paracyclophane. Polym Chem 3:2727–2730

    Article  CAS  Google Scholar 

  • Morisaki Y, Kawakami N, Nakano T, Chujo Y (2013) Energy transfer properties of a [2.2]paracyclophane-based through-space dimer. Chem Eur J 19:17715–17718

    Article  CAS  PubMed  Google Scholar 

  • Morisaki Y, Kawakami N, Shibata S, Chujo Y (2014a) Through-space conjugated molecular wire consisting of three π-electron systems. Chem Asian J 9:2891–2895

    Article  CAS  PubMed  Google Scholar 

  • Morisaki Y, Kawakami N, Shibata S, Chujo Y (2014b) Synthesis and properties of a through-space conjugated dimer. Chem Lett 43:426–428

    Article  CAS  Google Scholar 

  • Morisaki Y, Inoshita K, Chujo Y (2014c) Planar chiral through-space conjugated oligomers: synthesis and characterization of chiroptical properties. Chem Eur J 20:8386–8390

    Article  CAS  PubMed  Google Scholar 

  • Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y (2014d) Planar chiral tetrasubstituted [2.2]paracyclophane: optical resolution and functionalization. J Am Chem Soc 136:3350–3353

    Article  CAS  PubMed  Google Scholar 

  • Morisaki Y, Inoshita K, Shibata S, Chujo Y (2015) Synthesis of optically active through-space conjugated polymers consisting of planar chiral [2.2]paracyclophane and quaterthiophene. Polym J 47:278–281

    Article  CAS  Google Scholar 

  • Morisaki Y, Sawada R, Gon M, Chujo Y (2016) New type of planar chiral [2.2]paracyclophanes and construction of one-handed double helices. Chem Asian J 11:2524–2527

    Article  CAS  PubMed  Google Scholar 

  • Morisaki Y, Shibata S, Chujo Y (2017) [2.2]paracyclophane-based single molecular wire consisting of four π-electron systems can. J Chem 95:424–431

    Google Scholar 

  • Muller G (2014) In luminescence of lanthanide ions in coordination compounds and nanomaterials. In: de Bettencourt-Dias A (ed). John Wiley & Sons, Chichester, U.K., pp 77–124

    Google Scholar 

  • Müller S, Liepold B, Roth GJ, Bestmann HJ (1996) An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett 1996:521522

    Article  Google Scholar 

  • Ohira S (1989) Methanolysis of dimethyl (1-diazo-2-oxopropyl) phosphonate: generation of dimethyl (diazomethyl) phosphonate and reaction with carbonyl compounds. Synth Commun 19:561–564

    Article  CAS  Google Scholar 

  • Oldham WJ, Miao YJ, Lachicotte RJ, Bazan GC (1998) Stilbenoid dimers: effect of conjugation length and relative chromophore orientation. J Am Chem Soc 120:419–420

    Article  CAS  Google Scholar 

  • Pamperin D, Hopf H, Syldatk C, Pietzsch M (1997) Synthesis of Planar Chiral [2.2]Paracyclophanes by Biotransformations: Kinetic Resolution of 4-Formyl[2.2]paracyclophane by Asymmetric Reduction. Tetrahedron Asym 8:319–325

    Article  CAS  Google Scholar 

  • Pamperin D, Ohse B, Hopf H, Pietzsch M (1998) Synthesis of planar-chiral [2.2]paracyclophanes by biotransformations: screening for hydrolase activity for the kinetic resolution of 4-acetoxy-[2.2]paracyclophane. J Mol Cat B Enzymatic 5:317–319

    Article  CAS  Google Scholar 

  • Paradies J (2011) [2.2]Paracyclophane derivatives: synthesis and application in catalysis. Synthesis 3749–3766

    Google Scholar 

  • Parmar R, Coles MP, Hitchcock PB, Rowlands GJ (2010) Towards a flexible strategy for the synthesis of enantiomerically pure [2.2]paracyclophane derivatives: the chemistry of 4-tolylsulfinyl[2.2]paracyclophane. Synthesis 4177–4187

    Google Scholar 

  • Pye PJ, Rossen K, Reamer RA, Tsou NN, Volante RP, Reider PJ (1997) A new planar chiral bisphosphine ligand for asymmetric catalysis: highly enantioselective hydrogenations under mild conditions. J Am Chem Soc 119:6207–6208

    Article  CAS  Google Scholar 

  • Riehl JP, Muller F (2012) Comprehensive chiroptical spectroscopy. Wiley and Sons, New York

    Google Scholar 

  • Riehl JP, Richardson FS (1986) Circularly polarized luminescence spectroscopy. Chem Rev 86:1–16

    Article  CAS  Google Scholar 

  • Rossen K, Pye PJ, Maliakal A, Volante RP (1997) Kinetic resolution of rac-4,12-dibromo[2.2]paracyclophane in a palladium [2.2]phanephos catalyzed amination. J Org Chem 62:6462–6463

    Article  CAS  Google Scholar 

  • Rowlands GJ (2008) The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem 6:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Rozenberg V, Sergeeva E, Hopf H (2004) In Gleiter R, Hopf H (eds) Modern cyclophane chemistry. Wiley-VCH, Weinheim, Germany, pp 435–462

    Google Scholar 

  • Salhi F, Collard DM (2003) π-stacked conjugated polymers: the influence of paracyclophane π-stacks on the redox and optical properties of a new class of broken conjugated polythiophenes. Adv Mater 15:81–85

    Article  CAS  Google Scholar 

  • Salhi F, Lee B, Metz C, Bottomley LA, Collard DM (2002) Influenece of π-stacking. on the redox properties of oligothiophenes: (α-alkyloligo-thienyl)para[2.2]cyclophane. Org Lett 4:3195–3198

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S (2015) Circularly polarized luminescence from simple organic molecules. Chem Eur J 21:13488–13500

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Tsuchida H, Kakuta T, Ogoshi T, Morisaki Y (2018) Synthesis of optically active π-stacked compounds based on planar chiral tetrasubstituted [2.2]paracyclophane. Mater Chem Front 2:791–795

    Article  CAS  Google Scholar 

  • Sato S, Yoshii a, Takahashi S, Furumi S, Takauchi M, Isobe H (2017) Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity. PNAS 114:13097–13101

    Google Scholar 

  • Sawada Y, Furumi S, Takai A, Takeuchi M, Noguchi K, Tanaka K (2012) Rhodium-catalyzed Enantioselective synthesis, crystal structures, and photophysical properties of helically chiral 1,1’-bitriphenylenes. J Am Chem Soc 134:4080–4083

    Article  CAS  PubMed  Google Scholar 

  • Sawada R, Gon M, Nakamura J, Morisaki Y, Chujo Y (2018) Synthesis of enantiopure planar chiral bis-(para)-pseudo-meta-type [2.2]paracyclophanes. Chirality 30:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y, Ma J, Liu S, Wang Y, Zhu C, Cheng Y (2016) Strong and reversible circularly polarized luminescence emission of a chiral 1,8-naphthalimide fluorophore induced by excimer emission and orderly aggregation. Chem Eur J 22:9519–9522

    Article  CAS  PubMed  Google Scholar 

  • Sonogashira K (2002) In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis. Wiley-Interscience, New York, pp 493–529

    Google Scholar 

  • Takaishi K, Yamamoto S, Hinoide S, Ema T (2017) Helical oligonaphthodioxepins showing intense Circularly Polarized Luminescence (CPL) in solution and in the solid state. Chem Eur J 23:9249–9252

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Inoue Y, Mori T (2018) Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors. ChemPhotoChem 2:386–402

    Article  CAS  Google Scholar 

  • Tohda Y, Sonogashira K, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  • Vögtle F (1993) cyclophane chemistry: synthesis, structures and reactions. John Wiley & Sons, Chichester

    Google Scholar 

  • Vorontsova NV, Rozenberg VI, Sergeeva EV, Vorontsov EV, Starikova ZA, Lyssenko KA, Hopf H (2008) Symmetrically tetrasubstituted [2.2]paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution. Chem Eur J 14:4600–4617

    Article  CAS  PubMed  Google Scholar 

  • Weiland KJ, Gallego A, Mayor M (2019) Beyond simple substitution patterns—symmetrically tetrasubstituted [2.2]paracyclophanes as 3D functional materials. Eur J Org Chem 3073–3085

    Google Scholar 

  • Wielopolski M, Molina-Ontoria A, Schubert C, Margraf JT, Krokos E, Kirschner J, Gouloumis A, Clark T, Guldi DM, Martín N (2013) Blending through-space and through-bond π-π-coupling in [2,2’]-paracyclophane-oligophenylenevinylene molecular wires. J Am Chem Soc 135:10372–10381

    Article  CAS  PubMed  Google Scholar 

  • Zhuravsky R, Starikova Z, Vorontsov E, Rozenberg V (2008) Novel Strategy for the synthesis of chiral pseudo-ortho-substituted hydrxy[2.2]paracyclophane-based ligands from the resolved 4-bromo-12-hydroxy[2.2]paracyclophane as a parent compound. Tetrahedron Asym 19:216–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Morisaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morisaki, Y. (2021). Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane. In: Ooyama, Y., Yagi, S. (eds) Progress in the Science of Functional Dyes. Springer, Singapore. https://doi.org/10.1007/978-981-33-4392-4_10

Download citation

Publish with us

Policies and ethics