Skip to main content

Anticancerous Activity of Transition Metal Oxide Nanoparticles

  • Chapter
  • First Online:
NanoBioMedicine

Abstract

Transition metal oxide (TMO) nanoparticles are becoming a major thrust area of research due to their potential anticancer activity. Their variable d-shell configurations, limited size, and a high density of corner or edge surface sites render them to exhibit unique physical and chemical properties. The TMO nanoparticles have shown excellence in various fields including catalysis, biomedical, solar cell, and lithium-ion batteries. Nanoparticles of copper oxide, iron oxide, nickel oxide, and zinc oxide have been shown to exhibit potential cytotoxic effects against some human cancer cell lines. They have been also found to exhibit reactive oxygen species-mediated cell death in some of these cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ada K, Turk M, Oguztuzun S, Kilic M, Demirel M, Tandogan N, Ersayar E, Latif O (2010) Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells. Folia Histochem Cytobiol 48(4):524–529

    PubMed  Google Scholar 

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain S, Schlager J, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410

    Article  CAS  Google Scholar 

  • Ahamed M, Khan MAM, Akhtar MJ, Alhadlaq HA, Alshamsan A (2017) Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci Rep 7:17662

    Google Scholar 

  • Ai H, Flask C, Weinberg B, Shuai XT, Pagel MD, Farrell D, Duerk J, Gao J (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic resonance probes. Adv Mat 17:1949–1952

    Article  CAS  Google Scholar 

  • Al-Awady MJ, Greenway GM, Paunov VN (2015) Nanotoxicity of polyelectrolyte-functionalized titania nanoparticles towards microalgae and yeast: role of the particle concentration, size and surface charge. RSC Adv 5:37044–37059

    Article  CAS  Google Scholar 

  • Ali D, Alarifi S, Alkahtani S, AlKahtane AA, Almalik A (2014) Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochem Biophys 71:1643–1651

    Article  CAS  Google Scholar 

  • Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM, Reilly CM, Zanger K, Stahl W, Das S et al (2011a) Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 32:2918–2929

    Article  CAS  PubMed  Google Scholar 

  • Alili L, Sack M, Karakoti AS et al (2011b) Combined cytotoxic and antiinvasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 32:2918–2929

    Article  CAS  PubMed  Google Scholar 

  • Alili L, Sack M, von Montfort C, Giri S, Das S, Carroll KS, Zanger K, Seal S, Brenneisen P (2013a) Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 19:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alili L, Sack M, von Montfort C, Giri S, Das S et al (2013b) Downregulation of tumor growth invasion by redox-active nanoparticles. Antioxid Redox Signal 19:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez S, Muhammed M, Zagorodni A (2006) Novel flow injection synthesis of Iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625

    Article  CAS  Google Scholar 

  • Arivalagan K, Ravichandran S, Rangasamy K, Karthikeyan E (2011) Nanomaterials and its potential applications. Int J Chem Tech Res 3:534–538

    Google Scholar 

  • Arora O (2017) World J Eng Res 2:81

    Google Scholar 

  • Arsalani N (2010) Fattahi H & Nazarpoor M. Polym Lett 4:329

    Article  CAS  Google Scholar 

  • Arunachalam T, Karpagasundaram M, Rajarathinam N (2017) Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Mat Sci Poland 35:791–798

    Article  CAS  Google Scholar 

  • Arya A, Gangwar A, Singh SK, Roy M, Das M et al (2016) Cerium oxide nanoparticles promote neurogenesis abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade. Int J Nanomedicine 11:1159–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl 48:2308–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayyub P, Palkar VR, Chattopadhyay S, Multani M (1995) Phys Rev B 51:6135

    Article  CAS  Google Scholar 

  • Azam A, Ahmed AS, Oves M et al (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. Int J Nanomedicine 7:3527–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behera M, Giri G (2014) Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant. Mat Sci Poland 32:702–708

    Article  CAS  Google Scholar 

  • Bernard V, Mornstein V (2016) The viability of ovarian carcinoma cells a2780 affected by titanium dioxide nanoparticles and low ultrasound intensity. Lékař a technika 46:21–24

    Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259

    Article  CAS  PubMed  Google Scholar 

  • Bogdan J, Czarnak JP, Zarzyńska J (2017) Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: a review. Nanoscale Res Lett 12:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byrne, J.M.; Telling, N.D.; Coker, V.S.; Pattrick, R.A.D.; van der Lann, G.; Arenholz, E.; Tuna, F.; Lloyd, J.R. (2011) Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens. Nanotechnology 2011, 22, 455709

    Google Scholar 

  • Cabrera L, Gutierrez S, Menendez N, Morales P, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436

    Article  CAS  Google Scholar 

  • Cahyana AH, Pratiwi D, Ardiansah B (2017) Int Conf on Recent Trends in Physics IOP Conf. Series: Mat Sci and Eng 188: 1

    Google Scholar 

  • Chakraborty R, Basu T (2017) Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology 28(10):105101

    Article  PubMed  CAS  Google Scholar 

  • Charbgoo F, Ahmad MB, Darroudi M (2017) Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomedicine 12:1401–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee A, Ajantha M, Talekar A, Revathy N, Abraham J (2017) Biosynthesis, antimicrobial and cytotoxic effects of titanium dioxide nanoparticles using Vigna unguiculata seeds. Int J Pharmacognosy Phytochem Res 9(1):95–99

    Google Scholar 

  • Chazotte-Aubert L, Oikawa S, Gilibert I, Bianchini F, Kawanishi S, Ohshima H (1999) Cytotoxicity and site-specific DNA damage induced by nitroxyl anion (NO-) in the presence of hydrogen peroxide. Implications for various pathophysiological conditions. J Biol Chem 274:20909–20915

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhang Y, Huangetal B (2013) Evaluationoftheantitumor activity by Ni nanoparticles with verbascoside. J Nanomater,2013: 623497,6

    Google Scholar 

  • Clutton S (1997) The importance of oxidative stress in apoptosis. Br Med Bull 53:662–668

    Article  CAS  PubMed  Google Scholar 

  • Colon J, Herrera L, Smith J et al (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 5:225–231

    Article  CAS  PubMed  Google Scholar 

  • Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 6:698–705

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  • Darroudi M, Sabouri Z, Oskuee RK, Zak AK, Kargar H, Hamid MHNA (2014a) Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects. Ceram Int 40:4827–4831

    Article  CAS  Google Scholar 

  • Darroudi M, Sabouri Z, Oskuee RK, Zak AK, Kargar H, Hamid MHNA (2014b) Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects. Ceram Int 40:4827–4831

    Article  CAS  Google Scholar 

  • Das S, Singh S, Dowding JM et al (2012) The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33:7746–7755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Groot JF, Mandel JJ (2014) Update on anti-angiogenic treatment for malignant gliomas. Curr Oncol Rep 16:380

    Article  PubMed  CAS  Google Scholar 

  • De Marzi L, Monaco A, de Lapuente J, Ramos D, Borras M, di Gioacchino M, Santucci S, Poma A (2013a) Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci 14:3065–3077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Marzi L, Monaco A, de Lapuente J, Ramos D, Borras M, di Gioacchino M, Santucci S, Poma A (2013b) Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci 14:3065–3077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deo KM, Pages BJ, Ang DL, Gordon CP, Aldrich-Wright JR (2016) Transition metal intercalators as anticancer agents-recent advances. Int J Mol Sci 17:1–17

    Article  CAS  Google Scholar 

  • Desmoulière A, Guyot C, Gabbiani G (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48:509–517

    Article  PubMed  Google Scholar 

  • Desoize B (2004) Metals and metal compounds in cancer treatment. Anticancer Res 24:1529–1544

    CAS  PubMed  Google Scholar 

  • Dipranjan L, Debalina B, Arindam P, Chitta Ranjan S, Panchanan P et al (2012) Evaluation of copper iodide and copper phosphate nanoparticles for their potential cytotoxic effect. Toxicol Res 1:131136

    Google Scholar 

  • Ducrocq C, Blanchard B, Pignatelli B, Ohshima H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55:1068–1077

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, Mukherjee M, Basu T (2016) Green synthesized cerium oxide nanoparticle: a prospective drug against oxidative harm. Colloids Surf B: Biointerfaces 147:45–53

    Article  CAS  PubMed  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ (2016a) Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B 164:352–360

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariame A, Kennedy LJ (2016b) Green synthesis of NiO nanoparticles using Moringa Oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells https://doi.org/10.1016/j.jphotobiol.2016.10.003

  • Falcaro P, Ricco R, Yazdi A et al (2015) Application of metal and metal oxide nanoparticles @ MOFs. Coord Chem Rev 307

    Google Scholar 

  • Fernández-García M, Martínez-Arias A, Hanson JC, Rodríguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104:4063

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara R, Luo Y, Sasaki T, Fujii K, Ohmori H, Kuniyasu H (2015) Cancer therapeutic effects of titanium dioxide nanoparticles are associated with oxidative stress and cytokine induction. Pathobiology 82:243–251

    Article  CAS  PubMed  Google Scholar 

  • Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M et al (2013) Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol 4(4–5):91–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giri S, Karakoti A, Graham RP, Maguire JL, Reilly CM et al (2013) Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS One 8:e54578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magnet Mag Mat 293:265–270

    Article  CAS  Google Scholar 

  • Green M (2005) Organometallic based strategies for metal nanocrystal synthesis. Chem Commun (24):3002–3011

    Google Scholar 

  • Grisham MB, Jourd’heuil D, Wink DA (2000) Chronic inflammation and reactive oxygen and nitrogen metabolism-implications in DNAdamage and mutagenesis [review]. Aliment Pharmacol Ther 14(suppl 1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Gultekin DD, Nadaroglu H, Gungor AA, Kishali NH (2017) Biosynthesis and characterization of copper oxide nanoparticles using Cimin grape (Vitis vinifera cv) extract. Int J Sec Metabolite 4:77–84

    Article  Google Scholar 

  • Guo D, Wu C, Jiang H et al (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B 93:119–126

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Zhang J, Yang L, Wang H, Wang F et al (2010) Synthesis of amorphous and crystalline cupric sulfide nanoparticles and study on the specific activities on different cells. Chem Commun (Camb) 46(20):3493–3495

    Article  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Harnisch W, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2012) Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J Photochem Photobiol B 114:87–93

    Article  CAS  PubMed  Google Scholar 

  • Han L, Li S, Yang Y, Zhao F, Huang J, Chang J (2007a) Comparison of magnetite nanocrystals formed by biomineralization and chemosynthesis. J Mag Mag Mat 313:236–242

    Article  CAS  Google Scholar 

  • Han L, Li S, Yang Y, Zhao F, Huang J, Chang J (2007b) Comparison of magnetite nanocrystals formed by biomineralization and chemosynthesis. J Mag Mag Mat 313:236–242

    Article  CAS  Google Scholar 

  • Hanley C, Layne J, Punnoose A et al (2008) Preferential killing of cancer cells and activated human T cells using zinc oxide nanoparticles. Nanotechnology 19:295103–295113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanley C, Thurber A, Hanna C et al (2009) The influences of cell type and ZnO nanoparticle size and immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4:1409–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W et al (2013) Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 7:10582–10596

    Article  CAS  PubMed  Google Scholar 

  • Helana V, Princea J, Al-Dhabib NA, Arasub MV, Ayeshamariam A, Madhumitha G, Roopan SM, Jayachandrane M (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys 6:712–718

    Article  Google Scholar 

  • Herrera-Becerra R, Rius JL, Zorrilla C (2010) Tannin biosynthesis of iron oxide nanoparticles. Appl Phys A Mater Sci Process 100:453–459

    Article  CAS  Google Scholar 

  • Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7:1443–1459

    Article  CAS  PubMed  Google Scholar 

  • Honary S, Barabadi H, Gharaeifathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Digest J Nanomat Biostruct 7:999–1005

    Google Scholar 

  • Hong RY, Pan TT, Li HZ (2006) Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J Magn Magn Mater 303(1):60–68

    Article  CAS  Google Scholar 

  • Hong H et al (2011) Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett 11:3744–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong H et al (2015) Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces 7:3373–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Wu C, Aronstam RS (2010) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3:4842–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indira TK, Laksmi PK (2010) Magnetic nanoparticles—a review. Int J pharm Sci. Nanotechnol 3:1035–1042

    CAS  Google Scholar 

  • Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2(3):194–205

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Kumar TS, Bagavan A, Gaurav K, Karthik L, BhaskaraRao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2611

    Article  CAS  PubMed  Google Scholar 

  • Jeronsia JE, Raj DJV, Joseph LA, Rubini K, Das SJ (2016) In vitro antibacterial and anticancer activity of copper oxide nanostructures in human breast Cancer Michigan Cancer Foundation-7 cells. J Med Sci 36(4):145–151

    Article  Google Scholar 

  • Jha AK, Prasad K (2010) Biosynthesis of metal and oxide nanoparticles using lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291

    Article  CAS  PubMed  Google Scholar 

  • Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperth 26:790–795

    Article  Google Scholar 

  • Jurgons R, Seliger C, Hilpert A, Trahms L, Oden-bach S, Alexiou C (2006) Drug loaded magnetic nanoparticles for cancer therapy. J Phys: Cond Mat 18:S2893–S2902

    CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Thakur R, Chaudhury A (2016) Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev 9:33–38

    Article  CAS  Google Scholar 

  • Kawanishi S, Inoue S, Yamamoto K (1989) Site-specific DNAdamage induced by nickel(II) ion and hydrogen peroxide. Carcinogenesis 10:2231–2235

    Article  CAS  PubMed  Google Scholar 

  • Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017a) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev 10:186–201

    Article  CAS  Google Scholar 

  • Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M (2017b) Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomedicine Biotechnol. https://doi.org/10.1080/21691401.2017.1345928

  • Khan S, Ansari AA, Khan AA, Ahmad R, Al-Obaid O, Kattan A-W (2015) In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. J Biol Inorg Chem 20(8):1319–1326

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multi functional magnetic gold nano shells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45:7754–7758

    Article  CAS  Google Scholar 

  • Knaapen AM, Borm PJ, Albrecht C, Schins RPL (2004) Inhaled particles and lung cancer. Part a. mechanisms. Int J Cancer 109:799–809

    Article  CAS  PubMed  Google Scholar 

  • Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21:8858–8864

    Article  CAS  PubMed  Google Scholar 

  • Kolosnjaj-Tabi J, di Corato R, Lartigue L, Marango I, Guardia P, Silva AK, Luciani N, Clément O, Flaud P, Singh JV et al (2014) Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano 8:4268–4283

    Article  CAS  PubMed  Google Scholar 

  • Kumar JS, Kumar SV, Kumar SR (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour-Efficient Technols 3:459–465

    Article  Google Scholar 

  • Kurzawa-Zegota M, Sharma V, Najafzadeh M, Reynolds PD, Davies JP, Shukla RK, Alok D, Anderson D (2017) Titanium dioxide nanoparticles induce DNA damage in peripheral blood lymphocytes from Polyposis coli, Colon Cancer patients and healthy individuals: an Ex Vivo/In Vitro study. J Nanosci Nanotechnol 17(12):9274–9285

    Article  CAS  Google Scholar 

  • Laha D, Pramanik A, Maity J, Mukherjee A, Pramanik P et al (2014) Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim Biophys Acta 1840(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166:8–23

    Article  CAS  Google Scholar 

  • Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 11(9):1449–1470

    Article  CAS  PubMed  Google Scholar 

  • Li D et al (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine 9:3347–3361

    PubMed  PubMed Central  Google Scholar 

  • Lien HL, Jhuo YS, Chen LH (2007) Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environ Eng Sci 24:21

    Article  CAS  Google Scholar 

  • Lin W, Huang YW, Zhou XD, Ma Y (2006a) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–457

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Huang YW, Zhou XD, Ma Y (2006b) Toxicity of cerium oxide nanoparticles in human lung Cancer cells. Int J Toxicol 25:451–457

    Article  CAS  PubMed  Google Scholar 

  • Lin G et al (2014) Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials 35:9495–9507

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Kim JK (2009) Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Mater Lett 63:428

    Article  CAS  Google Scholar 

  • Lord MS, Tsoi B, Gunawan C, Teoh WY, Amal R, Whitelock JM (2013a) Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles. Biomaterials 34:8808–8818

    Article  CAS  PubMed  Google Scholar 

  • Lord MS, Tsoi B, Gunawan C, Teoh WY, Amal R, Whitelock JM (2013b) Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles. Biomaterials 34:8808–8818

    Article  CAS  PubMed  Google Scholar 

  • Lotfian H, Nemati F (2018) Cytotoxic effect of Tio2 nanoparticles on breast Cancer cell line (MCF-7). IIOABJ 7:219–224

    Google Scholar 

  • Ma X et al (2014) Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Colloids Surf B Bio Interfaces 126C:44–49

    Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324

    Article  Google Scholar 

  • Malarkodi C, Chitra K, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Vanaja M, Annadurai G (2013) Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Pelagia Res Library 4:59–66

    CAS  Google Scholar 

  • Mariam AA, Kashif M, Arokiyarajetal S (2014) Bio-synthesisof NiO and Ni nanoparticles and their characterization. Dig J Nanomater Biostruct 9:1007–1019

    Google Scholar 

  • McHale JM, Auroux A, Perrota AJ, Navrotsky A (1997) Science 277:788

    Article  CAS  Google Scholar 

  • Millot N, Aymes D, Bernard F, Niepce JC, Traverse A, Bouree F, Cheng BL, Perriat P (2003) J Phys Chem B 107:5740

    Article  CAS  Google Scholar 

  • Mishra RK, Thomas S, Kalarikkal N (eds) (2017) Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends. Woodhead, Elsevier

    Google Scholar 

  • Miyoshi N, Kume K, Tsutumi K, Fukunaga Y, Ito S, Imamurad Y, Bibin AB (2011) Application of Titanium Dioxide (TiO2) nanoparticles in photodynamic therapy (PDT) of an experimental tumor. AIP Confer Proc 1415:21

    Article  CAS  Google Scholar 

  • Moos PJ, Chung K, Woessner D et al (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23:733–739

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee D, Ghosh S. (2014). Green synthesis of ά-Fe2O3 nanoparticles from Aloe vera plant extract and its application in Arsenic (V) remediation. The First International Conference on Emerging Materials: Characterization & Application EMCA-2014 December 4–6, 2014,, At Kolkata, INDIA

    Google Scholar 

  • Munusamy S, Bhakyaraj K, Vijayalakshmi L, Stephen A, Narayanan V (2014) Synthesis and characterization of xerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. pp 2347–3207

    Google Scholar 

  • Muthukumar H, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem Eng 3:3149–3159

    Article  CAS  Google Scholar 

  • Naeimi H, Nazifi ZS (2013) J Nanopart Res 15:2026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagajyothia PC, Muthuramanb P, Sreekanthc TVM, Kim DH, Shima J (2017) Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10(2):215–225

    Article  CAS  Google Scholar 

  • Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushanae H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 9:7–12

    Article  Google Scholar 

  • Nair S, Sasidharan A, Divya Rani V et al (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:235–241

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nasseri MA, Ahrari F, Zakerinasab B (2016) A green biosynthesis of NiO nanoparticles using aqueous extract of Tamarix serotina and their characterization and application. Appl Organometal Chem 30:978–984

    Article  CAS  Google Scholar 

  • Naz S, Beach J, Heckert B, Tummala T, Pashchenko O et al (2017) Cerium oxide nanoparticles: a ’radical’ approach to neurodegenerative disease treatment. Nanomedicine 12:545–553

    Article  CAS  PubMed  Google Scholar 

  • Neri D, Supuran CT (2011) Interfering with pH regulation in tumors as a therapeutic strategy. Nat Rev Drug Discov 10:767–777

    Article  CAS  PubMed  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magnet Mag Mat 293:483–496

    Article  CAS  Google Scholar 

  • Olsvik O, PopovicT SE, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M (1994) Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 7:43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Órdenes-Aenishanslins NA, Saona LA, Durán-Toro VM, Monrás JP, Bravo DM, Pérez-Donoso JM (2014) Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb Cell Factories 13:90

    Google Scholar 

  • Panariti A, Misserocchi G, Rivolta I (2012) The effect of nanoparticle uptake on cellular behaviour: disrupting or enabling functions? Nanotechnol Sci Appl 5:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey N, Dhiman S, Srivastava T, S M (2016) Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem Biol Interact 254:221–230

    Article  CAS  PubMed  Google Scholar 

  • Pešić M, Podolski R-A, Stojković S, Matović B, Zmejkoski D et al (2015) Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem Biol Interact 5(232):85–93. however copper nanoparticles have turned into a favoured decision among researchers [5-10]

    Article  CAS  Google Scholar 

  • Phumying S, Labuayai S, Thomas C, Amorkitbamrung V, Swatsitang E, Maensiri S (2013) Aloe-vera plant extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl Phys A 111(4)

    Google Scholar 

  • Pilapong C et al (2014) Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm 473:469–474

    Article  CAS  PubMed  Google Scholar 

  • Pramanik A, Laha D, Chattopadhyay S, Dash SK, Roy S et al (2015) Targeted delivery of “copper carbonate” nanoparticles to cancer cell in-vivo. Toxicol Res 4:1604–1612

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1:129–135

    CAS  Google Scholar 

  • Rafique S, Idrees M, Nasim A et al (2010) Transition metal complexes as potential therapeutic agents. Biotechnol Mol Biol Rev 5:38–45

    CAS  Google Scholar 

  • Raghad DH, Abdul J, Rasha SN, Ahmed NA (2016) Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. WSN 49(2):204–222

    Google Scholar 

  • Raj KP, Sivakarthik P, Uthirakumar AP (2014) Thangaraj V cytotoxicity assessment of synthesized nickel oxide nanoparticles on MCF-7 and A-549 cancer cell lines. J Chem Pharma Sci 4:269–271

    Google Scholar 

  • Rajakumar G, Rahuman A, Roopan SM, Khanna G, Elango G, Kamaraj C, Zahir AA, Kanayairam V (2012) Fungus mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  Google Scholar 

  • Rajan A, Cherian E, Baskar G (2016) International. J Modern Sci Technol 1:52–57

    Google Scholar 

  • Ramesh P, Rajendrana A, Meenakshisundaram M (2014) Green synthesis of zinc oxide nanoparticles using flower extract Cassia Auriculata. J Nanosci Nanotechnol 2:41–45

    Google Scholar 

  • Rao KG, Ashok CH, Rao KV, Chakra CS, Tambur P (2015) Green synthesis of TiO2 nanoparticles using Aloe Vera extract. Int J Adv Res Phy Sci 2:28–34

    Google Scholar 

  • Rao PV, Nallappan D, Madhavi K, Rahman S, Wei LJ, Gan SH (2016) Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2016, Article ID 3685671, 15 pages https://doi.org/10.1155/2016/3685671

  • Reddy KM, Feris K, Bell J et al (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:213902–213903

    Article  CAS  Google Scholar 

  • Rodríguez JA, Fernández-García M (eds) (2007) Synthesis, properties and applications of oxide nanoparticles. Wiley, New Jersey

    Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  • Sack M, Alili L, Karaman E, Das S, Gupta A, Seal S, Brenneisen P (2014a) Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles—a novel aspect in cancer therapy. Mol Cancer Ther 13:1740–1749

    Article  CAS  PubMed  Google Scholar 

  • Sack M, Alili L, Karaman E, Das S, Gupta A, Seal S, Brenneisen P (2014b) Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles—a novel aspect in cancer therapy. Mol Cancer Ther 13:1740–1749

    Article  CAS  PubMed  Google Scholar 

  • Sack M, Alili L, Karaman E, Das S, Gupta A et al (2014c) Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles-a novel aspect in cancer therapy. Mol Cancer Ther 13:1740–1749

    Article  CAS  PubMed  Google Scholar 

  • Sak K (2012) Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012:1–11

    Article  CAS  Google Scholar 

  • Salvadori MR, Nascimento CAO, Corrˆea B (2014) Nickel oxidenanoparticlesfilmproducedbydeadbiomassoffilamentousfungus. Sci Rep 4:Article 6404

    Article  PubMed  CAS  Google Scholar 

  • Sangeetha G, Rajeshwari S, Rajendran V (2012) Aloe barbadensis miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta Part A 97:1140–1144

    Article  CAS  Google Scholar 

  • Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V (2014) Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C 44:234–239

    Article  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim S (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7:968–976

    Article  CAS  PubMed  Google Scholar 

  • Saptarshi SR, Dschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bioreactivity of the nanoparticle. J Nanobiotechnol 11:26

    Article  CAS  Google Scholar 

  • Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on Pseudomonas Aeruginosa. Dig J Nanomater Biostruct 7:1655–1660

    Google Scholar 

  • Shah RK, Boruah F, Parween N (2015) Synthesis and characterization of ZnO nanoparticles using leaf extract of Camellia sinensis and evaluation of their antimicrobial efficacy. Int J Curr Microbiol App Sci 4:444–450

    CAS  Google Scholar 

  • Shahbazi-Gahrouei D, Abdolahi M (2013) Detection of MUC1-expressing ovarian cancer by C595 monoclonal antibody-conjugated SPIONs using MR imaging. Sci World J 2013:609151

    Article  CAS  Google Scholar 

  • Sharma, H. et al (2014) Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif Cells Nanomed Biotechnol. Published online November 19, 2014

    Google Scholar 

  • Shi J et al (2014) A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 35:5771–5784

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M (2013a) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS ONE 8, https://doi.org/10.1371/journal.pone.0069534

  • Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M (2013b) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One 8:e69534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AC, Oliveira TR, Mamani JB, Malheiros SM, Malavolta L, Pavon LF, Sibov TT, Amaro E Jr, Tann_us A, Vidoto EL (2011) Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine 6:591–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6:365–369

    Article  CAS  Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014a) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A 129:255–258

    Article  CAS  Google Scholar 

  • Sivaraj R, Rahman PKSM, Rajiv P, Venckatesh HASR (2014b) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricata leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta Part A Mol Biomol Spec 133:178–181

    Article  CAS  Google Scholar 

  • Sivaraj R, Rahman PKSM, Rajiv GP, Venckatesh R (2014c) Biogenic zinc oxide nanoparticles synthesis using Tabernaemontana Divaricata leaf extract and its anticancer activity against MCF-7 breast cancer cell lines. Int Conf Advan Agric Biol Environ Sci:83–85

    Google Scholar 

  • Sreekanth TVM, Pandurangan M, Kim DH, Lee YR (2016) Green synthesis: in-vitro anticancer activity of silver nanoparticles on human cervical Cancer cells. J Clust Sci 27(2):671681

    Article  CAS  Google Scholar 

  • Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220

    Google Scholar 

  • Subramanyam SG, Siva K (2016) Biosynthesis, Characterization and application of titanium oxide nanoparticles by Fusarium oxysporum. 4: 69–75

    Google Scholar 

  • Sudhagar S et al (2011) Targeting and sensing cancer cells with ZnO nanoprobes in vitro. Biotechnol Lett 33:1891–1896

    Article  CAS  PubMed  Google Scholar 

  • Sun C et al (2008) Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine 3:495–505

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Yan Y, Zhao Y, Guo F, Jiang C (2012) Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One 7:e43442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymanski P, Frczek T, Markowicz M, Mikiciuk- Olasik E (2012) Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 25:1089–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarafdar A, Raliya R, Wang WN, Biswas P, Tarafdar JC (2013) Green synthesis of TiONanoparticle using Aspergillus tubingensis. Adv Sci Eng Med 5:1–7

    Google Scholar 

  • Tarnuzzer RW, Colon J, Patil S, Seal S (2005a) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  PubMed  Google Scholar 

  • Tarnuzzer RW, Colon J, Patil S, Seal S (2005b) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  PubMed  Google Scholar 

  • Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: App Phys 36:182–197

    Article  Google Scholar 

  • Teja AS, Pei-Yoong K (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cry Grow Charac Mat 55:22–45

    Article  CAS  Google Scholar 

  • Ullah M, Naz A, Mahmood T, Siddiq M, Bano A (2014) Biochemical synthesis of nickel & cobalt oxide nano-particles by using biomass waste. Int J Enhanc Res Sci Technol Eng 3:415–422

    Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran KR (2010) Synthesis of metal oxide nano particles by Streptomyces sp. for development of antimicrobial textiles. Global J Biotechnol Biochem 5:153–160

    CAS  Google Scholar 

  • Van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann K-T, Gneveckow U, Scholz R, Thiesen B, Brück W, von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57

    Article  PubMed  CAS  Google Scholar 

  • Vaseem M, Tripathy N, Khang G, Hahn Y-B (2017) Green chemistry of glucose-capped ferromagnetic hcp-nickel nanoparticlesandtheirreducedtoxicity. RSC Adv 3(25):9698–9704

    Article  CAS  Google Scholar 

  • Venkatesh KS, Gopinath K, Palani NS, Arumugam A, Jose SP, Bahadur SA, Ilangovan R (2016) Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv 6:4272

    Google Scholar 

  • Vinardell MP, Mitjans M (2015) Antitumor activities of metal oxide nanoparticles. Nano 5:1004–1021

    CAS  Google Scholar 

  • von Montfort C, Alili L, Teuber-Hanselmann S, Brenneisen P (2015) Redox active cerium oxide nanoparticles protect human dermal fibroblasts from PQinduced damage. Redox Biol 4:1–5

    Article  CAS  Google Scholar 

  • Wahab R, Dwivedi S, Umar A, Singh S, Hwang IH, Shin HS, Musarrat J, Al-Khedhairy AA, Kim YS (2013a) ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells. J Biomed Nanotechnol 9:441–449

    Article  CAS  PubMed  Google Scholar 

  • Wahab R, Kaushik NK, Kaushik N, Choi EH, Umar A, Dwivedi S, Musarrat J, Al-Khedhairy AA (2013b) ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J Biomed Nanotechnol 9:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Wahab R, Siddiqui MA, Saquib Q, Dwivedi S, Ahmad J, Musarrat J, Al-Khedhairy AA, Shin HS (2014) ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf B Biointerfaces 117:267–276

    Article  CAS  PubMed  Google Scholar 

  • Walkey C, Das S, Seal S, Erlichman J, Heckman K et al (2015) Catalytic properties biomedical applications of cerium oxide nanoparticles. Environ Sci Nano 2:33–53

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wingett D, Engelhard MH et al (2009a) Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. J Mater Sci Mater Med 20:11–22

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wingett D, Engelhard MH et al (2009b) Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. J Mater Sci Mater Med 20:11–22

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Lee H, Wu B et al (2010) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 80:525–529

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zi XY, Su J, Zhang HX, Zhang XR et al (2012) Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int J Nanomedicine 7:2641–2652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang F, Zhang H-X, Zi XY, Pan XH, Chem F, Luo WD, Li JX, Zhu HY, Hu YP (2013a) Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis 4. https://doi.org/10.1038/cddis.2013.314

  • Wang Y, Yang F, Zhang HX et al (2013b) Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis 4:e783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2014) Surface engineered antifouling optomagnetic SPIONs for bimodal targeted imaging of pancreatic cancer cells. Int J Nanomedicine 9:1601–1615

    Article  PubMed  PubMed Central  Google Scholar 

  • Wason MS, Zhao J (2013a) Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am J Transl Res 5:126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wason MS, Zhao J (2013b) Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am J Transl Res 5:126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, Baker CH (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 9:558–569

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, Zeng Y, Li M, Zou G (2007) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Mater 309:307–311

    Article  CAS  Google Scholar 

  • Yaaghoobi M, Emtiazi G, Roghanian R (2012a) A novel approach for aerobic construction of iron oxide nanoparticles by Acinetobacter radioresistens and their effects on red blood cells. Curr Nanosci 8:286–291

    Article  CAS  Google Scholar 

  • Yaaghoobi M, Emtiazi G, Roghanian R (2012b) A novel approach for aerobic construction of iron oxide nanoparticles by Acinetobacter radioresistens and their effects on red blood cells. Curr Nanosci 8:286–291

    Article  CAS  Google Scholar 

  • Yaaghoobi M, Emtiazi G, Roghanian R (2012c) A novel approach for aerobic construction of iron oxide nanoparticles by Acinetobacter radioresistens and their effects on red blood cells. Curr Nanosci 8:286–291

    Article  CAS  Google Scholar 

  • Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahuman AA, Singh N (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 59:4782–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Bandfield JF (1998) J Mater Chem 8:2073

    Article  CAS  Google Scholar 

  • Zhang ZJ, Chen XY, Wang BN, Shi CW (2008a) Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. J Cryst Growth 310(24):5453–5457

    Google Scholar 

  • Zhang Y, Chen W, Wang SP et al (2008b) Phototoxicity of zinc oxide nanoparticle conjugates in human ovarian cancer. J Biomed Nanotechnol 4:432–438

    Article  CAS  Google Scholar 

  • Zhou Z et al (2014) Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35:7470–7478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, D., Majumder, S., Sharma, P. (2020). Anticancerous Activity of Transition Metal Oxide Nanoparticles. In: Saxena, S., Khurana, S. (eds) NanoBioMedicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9898-9_5

Download citation

Publish with us

Policies and ethics