Skip to main content

Heavy Metal Toxicity and Possible Functional Aspects of Microbial Diversity in Heavy Metal-Contaminated Sites

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

Heavy metals have emerged out as imperious category of pollutants, showing inimical effects on both human physiology and the dynamism of terrestrial and aquatic life forms and ecosystems. Depending on their oxidation states, heavy metals can be highly reactive and, therefore, toxic to the simplest to most complex organisms. Different human-based industries including metallurgical, chrome tanning, textiles, electronic, electroplating, metal culminating, fertilizer manufacture, mining, and steel and automobile industries are persuasive sources of toxic heavy metals including cadmium (Cd), gold (Au), silver (Ag), copper (Cu), lead (Pb), chromium (Cr), mercury (Hg), uranium (U), selenium (Se), zinc (Zn), arsenic (As), and nickel (Ni). All life forms including fungi, bacteria, yeasts, plants, and animals may be affected due to toxic levels of heavy metals; however, the diversity and magnitude of toxicities may vary for different organisms. Co-occurrence of different heavy metals in an ecological community may be prime mover of significant nocuous effects of the biomass/activity and diversity of soil microbiota than those instigated by single metals at high concentrations. Remediation of heavy metal-contaminated soils is getting substantial momentum and is a perplexing task as metals cannot be degraded and the jeopardies they stance are intensified by their moxie in the environment. Microorganisms are the first entity that endures direct and indirect impacts of hazardous heavy metals. Biochemical and molecular rejoinder of soil microbial population to heavy metal-polluted environment establish a germane model for ecological studies to appraise the influence and dynamics of environmental characteristics. Several microbes have habituated and harbor potential tolerance to detoxify heavy metal-contaminated environments at cellular level different strategies through bioaccumulation, biosorption, biotransformation, etc. for ameliorating heavy metal-contaminated sites. Therefore, universally, several researchers are trapping novel microorganisms for the isolation of competent heavy metal-tolerant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaye DA, Lawlor K, Hirsch PR, Brookes PC (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur J Soil Sci 56:93–102

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  PubMed  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York, p 533

    Book  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOAB Journal 3:39–46

    CAS  Google Scholar 

  • Ahmad I, Imran M, Ansari MI, Malik A, Pichtel J (2011) Metal tolerance and biosorption potential of soil Fungi, applications for a Green and clean water treatment technology. In: Ahmad I, Ahmad F, John Pichtel J (eds) Microbes and microbial technology, agricultural and environmental applications. Springer, New York/Dordrecht/Heidelberg/London, pp 321–362

    Chapter  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic, London

    Google Scholar 

  • Al-Hiyaly SAK, McNeilly T, Bradshaw AD, Mortimer AM (1993) The effect of zinc contamination from electricity pylons. Genetic constraints on selection for zinc tolerance. Heredity 70:22–32

    Article  CAS  Google Scholar 

  • Ali TA, Wainwright M (1995) Metal accumulation by Phanerochaete chrysosporium. Pak J Pharmacol 12(2):1

    CAS  Google Scholar 

  • Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489–498

    Article  CAS  PubMed  Google Scholar 

  • Allen H, Garrison A, Luther G (1998) Metals in surface waters. Sleeping Bear Press, Chelsea

    Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Blackie and Son Ltd., Glasgow/London

    Google Scholar 

  • Alonso A, Sanchez P, Martinez JL (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44:1778–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161

    Article  CAS  PubMed  Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153

    Article  CAS  PubMed  Google Scholar 

  • Ansari MI, Masood F, Malik A (2011) In: Ahmad I, Ahmad F, Pichtel JJ (eds) Microbes and microbial technology, agricultural and environmental applications. Springer, New York/Dordrecht/Heidelberg/London, pp 283–319

    Chapter  Google Scholar 

  • Anyanwu CU, Nwankwo SC, Moneke AN (2011) Soil bacterial response to introduced metal stress. Int J Basic Appl Sci IJBAS-IJENS 11:73–76

    Google Scholar 

  • Appleton JD, Williams TM, Orbea H, Carrasco M (2001) Fluvial contamination associated with artisanal gold mining in the Ponce Enriquez, Portovelo-Zaruma and Nambija areas, Ecuador. Water Air Soil Pollut 131:19–39

    Article  CAS  Google Scholar 

  • Ashraf T, Ali TA (2007) Effect of heavy metals on soil microbial community and mung beans seed germination. Pak J Bot 39(2):629–636

    Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications, 4th edn. Addison-Wesley, Reading

    Google Scholar 

  • Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    Article  CAS  PubMed  Google Scholar 

  • Ayyappan R, CarmalinSpohia A, Swaminathan K, Sandhya S (2005) Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes. Process Biochem 40:1293–1299

    Article  CAS  Google Scholar 

  • Baath E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379

    Article  CAS  Google Scholar 

  • Babich H, Stotzky G (1977) Sensitivity of various bacteria, including actinomycetes and fungi to cadmium and influence of pH on sensitivity. Appl Environ Microbiol 33:681–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bader JL, Gonzalez G, Goodell PC, Ali A-MS, Pillai SD (1999) Aerobic reduction of hexavalent chromium in soil by indigenous microorganisms. Biorem J 3:201–211

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Baird C, Cann M (2005) Environmental chemistry, 3rd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, Mcarthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  CAS  PubMed  Google Scholar 

  • Baquero F, Martínez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Wagner-Dobler I, Allen I, Laskin JWB, Geoffrey MG (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57

    Google Scholar 

  • Barton H (2005) Predicted intake of trace elements and minerals via household drinking water by 6-year-old children from Krakow, Poland. Part 2, Cadmium, 1997–2001. Food Addit Contam 22:816–828

    Article  CAS  PubMed  Google Scholar 

  • Battaglia-Brunet F, Dictor M-C, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic(III)-oxidizing bacterial population, selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Article  CAS  PubMed  Google Scholar 

  • Baudouin C, Charveron M, Tarrouse R, Gall Y (2002) Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348

    Article  CAS  PubMed  Google Scholar 

  • Bauhus J, Khanna PK (1999) The significance of microbial biomass in forest soils. In: Rastin N, Bauhus J (eds) Going underground - ecological studies in Forest soils. Research Signpost, Trivandrum, India, pp 77–110

    Google Scholar 

  • Beard SJ, Hashim R, Hernandez J, Hughes M, Poole RK (1997) Zinc (II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mole Microbiol 25:883–891

    Article  CAS  Google Scholar 

  • Belchik SM, Kennedy DW, Dohnalkova AC, Wang Y, Sevinc PC, Wu H, Lin Y, Lu HP, Fredrickson JK, Shi L (2011) Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 77:4035–4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S (2005) Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Beller HR (2005) Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the Chemolithoautotrophic bacterium Thiobacillus denitrificans. Appl Environ Microbiol 71(4):2170–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beolchini F, Pagnanelli F, Toro L, Vegliò F (2006) Ionic strength effect on copper biosorption by Sphaerotilus natans, equilibrium study and dynamic modelling in membrane reactor. Water Res 40:144–152

    Article  CAS  PubMed  Google Scholar 

  • Berti WR, Jacob LW (1996) Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge application. J Environ Qual 25:1025–1032

    Article  CAS  Google Scholar 

  • Bhattacharjee JW, Pathak SP, Ramteke PW, Kumar S, Ray PK (1991) Water quality monitoring studies in north eastern India in relation to health risks among the rural population. Curr Trends Limnol 1:255–264

    Google Scholar 

  • Birch GE, Scollen A (2003) Heavy metals in road dust, gully pots and parkland soils in a highly urbanised subcatchment of Port Jackson, Australia. Aust J Soil Res 41:1329–1342

    Article  CAS  Google Scholar 

  • Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:571–584

    Article  Google Scholar 

  • Blessing TC, Wielinga BW, Morra MJ, Fendorf S (2001) CoIIIEDTA- reduction by Desulfovibrio vulgaris and propagation of reactions involving dissolved sulfide and polysulfides. Environ Sci Technol 35:1599–1603

    Article  CAS  PubMed  Google Scholar 

  • Blindauer CA, Harrison MD, Robisnson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45, 1421–1432

    Article  CAS  PubMed  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23

    Article  CAS  PubMed  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    Article  CAS  PubMed  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Brookes PC, McGrath SP (1984) Effects of metal toxicity on the size of the soil microbial biomass. J Soil Sci 35:341–346

    Article  CAS  Google Scholar 

  • Broos K, Uyttebroek M, Mertens J, Smolders E (1993) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640

    Article  CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005a) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    Article  CAS  Google Scholar 

  • Broos K, Mertens J, Smolders E (2005b) Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: a comparative study. Environ Toxicol Chem 24:634–640

    Article  CAS  PubMed  Google Scholar 

  • Broos K, Macdonald LM, Warne J, Heemsbergen DA, Barnes MB, Bell M, McLaughlin MJ (2007) Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biol Biochem 39:2693–2695

    Article  CAS  Google Scholar 

  • Bruins MR, Kapll S, Oetme FW (2000) Microbial resistance in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Brumelis G, Lapina L, Nikodemus O, Tabors G (2002) Use of the O horizon of forest soils in monitoring metal deposition in Latvia. Water Air Soil Pollut 135:291–309

    Article  CAS  Google Scholar 

  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personne JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage water of Carnoulès, France. Appl Environ Microbiol 72:551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno BYM, Torem ML, Molina F, de Mesquita LMS (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus, equilibrium and kinetic studies. Miner Eng 21:65–75

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cabassi E (2007) The immune system and exposure to xenobiotics in animals. Vet Res Commun 31:115–120

    Article  PubMed  Google Scholar 

  • Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cánovas D, Cases L, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256

    Article  PubMed  Google Scholar 

  • Carpentier W, Sandra K, de Smet I, Briga A, de Smet L, van Beeumen J (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier W, de Smet L, van Beeumen J, Briga A (2005) Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J Bacteriol 187:3293–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayllahua JEB, de Carvalho RJ, Torem ML (2009) Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel(II) ions onto bacteria strain, Rhodococcus opacus. Miner Eng 22:1318–1325

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-García J, Nies D, Silver S (2007) Reduction and efflux of chromate by bacteria molecular microbiology of heavy metals. Springer, Berlin/Heidelberg

    Google Scholar 

  • Chaudri AM, McGrath SP, Gibbs P, Chambers BC, Carlton-Smith C, Bacon J, Campbell C, Aitken A (2008) Population size of indigenous Rhizobium leguminosarum biovar trifolii in long-term field experiments with sewage sludge cake, metal-amended liquid sludge or metal salts: effects of zinc, copper and cadmium. Soil Biol Biochem 40:1670–1680

    Article  CAS  Google Scholar 

  • Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4(6):873–880

    Google Scholar 

  • Chen R, Smith BW, Winefordner JD, Tu M, Kertulis G, Ma LQ (2004) Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectroscopy. Anal Chim Acta 504:199–207

    Article  CAS  Google Scholar 

  • Chen JZ, Tao XC, Xu J, Zhang T, Liu ZL (2005a) Biosorption of lead, cadmium and mercury by immobilized Microcystis aeroginosa in a column. Proc Biochem 40:3675–3679

    Article  CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wuand WX, Chen YX (2005b) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putidaCZ1. Colloids Surf 46:101–107

    Article  CAS  Google Scholar 

  • Chen G, Zeng G, Tang L, Du C, Jiang X, Huang G, Liu H, Shen G (2008) Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour Technol 9:7034–7040

    Article  CAS  Google Scholar 

  • Cheng SP (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res Int 10(3):192–198

    Article  CAS  PubMed  Google Scholar 

  • Cheung KH, Gu J-D (2003) Reduction of chromate (CrO4 2−) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  CAS  PubMed  Google Scholar 

  • Chihching C, Yumei K, Changchieh C, Chunwei H, Chihwei Y, Chunwei Y (2008) Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals. J Environ Sci 20:359–363

    Article  Google Scholar 

  • Choudhary S, Sar P (2009) Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration. Bioresour Technol 100:2482–2492

    Article  CAS  PubMed  Google Scholar 

  • Chrastny V, Komarek M, Tlusto P, Svehla J (2006) Effects of flooding on lead and cadmium speciation in sediments from a drinking water reservoir. Environ Monit Assess 118, 113–123

    Article  PubMed  CAS  Google Scholar 

  • Christine CC (1997) Cd bioaccumulation in carp (Cyprinus carpio) tissues during long-term high exposure, analysis by inductively coupled plasma-mass spectrometry. Ecotoxicol Environ Saf 38:137–143

    Article  Google Scholar 

  • Christopher LH, Ye D, Terry JG, Matthew WF, Liyou W, Soumitra B, Kerrie B, Tringe SG, Watson DB, He Z, Hazen TC, Tiedje JM, Rubin EM, Zhou J (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4:660–672

    Article  CAS  Google Scholar 

  • Chubar N, Behrends T, Cappellen PV (2008) Gram-negative bacterium Shewanella putrefaciens. Colloid Surf B Physicochem Eng Aspect 65:126–133

    Article  CAS  Google Scholar 

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  PubMed  Google Scholar 

  • Coker VS, Bennett JA, Telling ND, Henkel T, Charnock JM, van der Laan G, Pattrick RAD, Pearce CI, Cutting RS, Shannon IJ, Wood J, Arenholz E, Lyon IC, Lloyd JR (2010) Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano 4:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Collard JM, Corbisier P, Diels L, Dong Q, Jeanthon C (1994) Plasmids for heavy metal resistance in AlcaligenseutrophusCH34, mechanisms and application. FEMS Microbiol Rev 14:405–414

    Article  CAS  PubMed  Google Scholar 

  • Cooksey DA (1993) Copper uptake and resistance in bacteria. Mole Microbiol 7:1–5

    Article  CAS  Google Scholar 

  • Costa M (1997) Toxicology and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27:431–442

    Article  CAS  PubMed  Google Scholar 

  • Cutting RS, Coker VS, Telling ND, Kimber RL, Pearce CI, Ellis BL, Lawson RS, van der Laan G, Pattrick RAD, Vaughan DJ, Arenholz E, Lloyd JR (2010) Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering. Environ Sci Technol 44:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Dang H, Ren J, Song L, Sun S, An L (2008) Dominant chloramphenicol-resistant bacteria and resistance genes in coastal marine waters of Jiaozhou Bay, China. World J Microbiol Biotechnol 24:209–217

    Article  CAS  Google Scholar 

  • De Vargas I, Macaskieand LE, Guibal E (2004) Biosorption of palladium and platinum by sulfate-reducing bacteria. J Chem Technol Biotechnol 79:49–56

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in soil with reduced catabolic diversity less resistant to stress or disturbance. Soil Biol Biochem 33:1143–1153

    Article  CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy metal contaminated soils. Appl Environ Microbiol 65(2), 718–723

    Google Scholar 

  • Dell’Amico E, Mazzocchi M, Cavalca L, Allievi L, Andreoni V (2008) Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiol Res 163(6):671–683

    Article  PubMed  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    Article  PubMed  CAS  Google Scholar 

  • Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160:1–9

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Raviña M, Acea MJ, Carballas T (1993) Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biol Biochem 25:25–31

    Article  Google Scholar 

  • Diaz-Ravina M, Baath E, Frostegard A (1994) Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Appl Environ Microbiol 60:2238–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diels L, Van DL, Bastiaens L (2002) New development in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82

    Article  CAS  Google Scholar 

  • DiSpirito AA, Tuovinen OH (1982) Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidan. Arch Microbiol 133:28–32

    Article  CAS  Google Scholar 

  • Doelman P (1986) Resistance of soil microbial communities to heavy metals. In: Jensen V, Kjoller A, Sorensen LH (eds) Microbial communities in soil. Elsevier, London, pp 369–384

    Google Scholar 

  • Doelman P, Jansen E, Michels M, Til MV (1994) Effects of heavy metals in soils on microbial diversity and activity as shown by the sensitivity resistance index. Biol Fertil Soils 17:177–184

    Article  CAS  Google Scholar 

  • Doney SC, Abbot MR, Cullen JJ, Karl DM, Rothstein L (2004) From genes to ecosystems, the ocean’s new frontier. Front Ecol Environ 2:457–466

    Article  Google Scholar 

  • Dressler C, Kues U, Nies DH, Friedrich B (1991) Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl Environ Microbiol 57(11):3079–3085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Biorem J 3:171–188

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwoegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Duxbury T (1985) Ecology aspects of heavy metal responses in microorganisms. Adv Microb Ecol 8:185–235

    Article  CAS  Google Scholar 

  • Dykhuizen DE (1998) Santa Rosalia revisited, why are there so many species of bacteria? Antonie Van Leeuwenhoek 73:25–33

    Article  CAS  PubMed  Google Scholar 

  • EC (2003) Technical guidance document on risk assessment. Part II in Support of commission directive 93/67/EEC on risk assessment for new notified substances. European Communities. http://ecb.jrc.it/Documents/TECHNICAL_GUIDANCE_DOCUMENT/EDITION_2/tgdpart2_2ed.pdf

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    Article  CAS  Google Scholar 

  • Ehrlich HL (2002) How microbes mobilize metals in ores: a review of current understandings and proposals for further research. Min Metall Explor 19(4):220–224

    Article  CAS  Google Scholar 

  • Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation dependent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson D (2001) Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH. In: Lovley DR (ed) Environmental microbe–metal interactions. American Society for Microbiology Press, Washington, DC, pp 31–52

    Google Scholar 

  • Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • European Commission DG ENV (2002) Heavy metals in waste. Final Report

    Google Scholar 

  • Evangelou VP (1998) Environmental soil and water chemistry principles and applications. Wiley, New York

    Google Scholar 

  • Fabiani A, Gamalero E, Castaldini M, Cossa GP, Musso C, Pagliai M, Berta G (2009) Microbiological polyphasic approach for soil health evaluation in an Italian polluted site. Sci Total Environ 407(17):4954–4964

    Article  CAS  PubMed  Google Scholar 

  • Fertmann R, Hentschel S, Dengler D, Janssen U, Lommel A (2004) Lead exposure by drinking water, an epidemiological study in Hamburg, Germany. Int J Hyg Environ Healthvol 207:235–244

    Article  CAS  Google Scholar 

  • Fliessbach A, Martens R, Reber HH (1994) Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol Biochem 26:1201–1205

    Article  Google Scholar 

  • Florea RM, Stoica AI, Baiulescu GE, Capota P (2005) Water pollution in gold mining industry, a case study in Rosia Montana district, Romania. Environ Geol 48:1132–1136

    Article  CAS  Google Scholar 

  • Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65:5285–5292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1–5

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeterior. Biodegradation 62:195–203

    Article  CAS  Google Scholar 

  • Gadd GM (1992a) Microbial control of heavy metal pollution. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik I (eds) Microbial control of pollution. Cambridge University Press, Cambridge, pp 59–88

    Google Scholar 

  • Gadd GM (1992b) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2005) Microorganisms in toxic metal polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils, roles in genesis and functions. Springer, Berlin, pp 325–356

    Chapter  Google Scholar 

  • Gadd GM (2007) Fungi and industrial pollutants. In: Kubicek C (ed) The Mycota, Environmental and microbial relationships, vol IV. Springer, Berlin

    Google Scholar 

  • Gade LH (2000) Highly polar metal–metal bonds in “early-late” heterodimetallic complexes. Angewandte Chemie-Int Ed 39:2658–2678

    Article  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  • Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204

    Article  CAS  Google Scholar 

  • Gaspar GM, Mathe P, Szabo L, Orgovanyl B, Uzinger N, Anton A (2005) After-effect of heavy metal pollution in brown forest soils. Proceedings of the 8th Hungarian congress on plant physiology and the 6th Hungarian conference on photosynthesis. Acta Biol Szeged 49(1–2):71–72

    Google Scholar 

  • Ghosh A, Singh A, Ramteke PW, Singh VP (2000) Characterization of large plasmids encoding resistance to toxic heavy metals in Salmonella abortusequi. Biochem Biophys Res Commun 272:6–11

    Article  CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganism and microbial processes in agricultural soils: a review. Soil Biol Bichem 30(10–11):1389–1414

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 4:2031–2037

    Article  CAS  Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Pilar-Bernal M, Serrano R, Avino JN (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  PubMed  Google Scholar 

  • Gorby YA, Caccavo F, Bolton H (1998) Microbial reduction of cobalt III EDTA- in the presence and absence of manganese(IV) oxide. Environ Sci Technol 32:244–250

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR, commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Green-Ruiz C, Rodriguez-Tirado V, Gomez-Gil B (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali, pH, salinity and temperature effects. Bioresour Technol 99:3864–3870

    Article  CAS  PubMed  Google Scholar 

  • Griffiths BS, Ritz K, Weatley RE (1997) In: Insam H, Rangger A (eds) Microbial communities, functional versus structural approaches. Springer, Berlin/Heidelberg/New York, pp 1–18

    Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F et al (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 90:279–294

    Article  Google Scholar 

  • Guiné V, Martins JMF, Gaudet JP (2003) Facilitated transport of heavy metals by bacterial colloids in sand columns. J de Physique IV 107:593–596

    Google Scholar 

  • Guiné V, Martins JMF, Causse B, Durand A, Gaudet JP, Spadini L (2007) Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc. Chem Geol 236:266–280

    Article  CAS  Google Scholar 

  • Gulson BL, Law AJ, Korsch MJ, Mizon KJ (1994) Effect of plumbing systems on lead content of drinking-water and contribution to lead body burden. Sci Total Environ 144:279–284

    Article  CAS  PubMed  Google Scholar 

  • Gulson BL, James M, Giblin AM, Sheehanand A, Mitchell P (1997) Maintenance of elevated lead levels in drinking water from occasional use and potential impact on blood leads in children. Sci Total Environ. 205, 271–275

    Article  CAS  Google Scholar 

  • Guo Z, Megharaj M, Beer M, Ming H, Rahman M, Wu M, Naidu R (2009) Heavy metal impact on bacterial biomass based on DNA analysis and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol 100:3831–3836

    Article  CAS  PubMed  Google Scholar 

  • Han H, Gu JD (2010) Sorption and transformation of toxic metals by microorganisms. In: Mitchell R, Gu JD (eds) Environmental microbiology. Wiley, Hoboken/New Jersey, pp 152–175

    Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, Kingery WL, Triplett GE (2007) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  CAS  Google Scholar 

  • Hansel CM, Benner SG, Neiss J, Dohnalkova A, Kukkadapu RK, Fendorf S (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim Cosmochim Acta 67:2977–2992

    Article  CAS  Google Scholar 

  • Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202

    Article  CAS  PubMed  Google Scholar 

  • Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci 106:22169–22174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SH, Srivastava P (2009) Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp. J Environ Manag 90:3313–3321

    Article  CAS  Google Scholar 

  • Hasan SH, Srivastava P, Talat M (2009) Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila, central composite design for optimization of process variables. J Hazard Mater 15:1155–1162

    Article  CAS  Google Scholar 

  • Hassen A, Saidi N, Cherif M, Boudabous A (1998) Resistance of environmental bacteria to heavy metals. Bioresour Technol 64:7–15

    Article  CAS  Google Scholar 

  • Hattori H (1996) Decomposition of organic matter with previous cadmium adsorption in soils. Soil Sci Plant Nutr 42:745–752

    Article  CAS  Google Scholar 

  • Hau HH, Gilbert A, Coursolle D, Gralnick JA (2008) Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1. Appl Environ Microbiol 74:6880–6886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Article  Google Scholar 

  • Herbel MJ, Blum JS, Oremland RS, Borglin SE (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-Oxyanions. Geomicrobiol J 20:587–602

    Article  CAS  Google Scholar 

  • Herland BJ, Taylor D, Wither K (2000) The distribution of mercury and other trace metals in the sediments of the Mersey Estuary over 25 years, 1974–1998. Sci Total Environ 253:45–62

    Article  Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Tot Environ 312:195–219

    Article  CAS  Google Scholar 

  • Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgers MT, Ludwig ML (2001) Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site. Proc Natl Acad Sci U S A 98:11169–11174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho KC, Chow YL, Yau JT (2003) Chemical and microbiological qualities of the East River. Chemosphere 52:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Hockin S, Gadd GM (2006) Removal of selenate from sulfate-containing media by sulfate-reducing bacterial biofilms. Environ Microbiol 8:816–826

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Hughes WW (2005) Essentials of environmental toxicology, the effects of environmentally hazardous substances on human health. Taylor and Francis e-Library, Philadelphia

    Google Scholar 

  • Hunter P (2008) A toxic brew we cannot live without. EMBO Rep 9(1):15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein H, Farag S, Kandil K, Moawad H (2005) Tolerance and uptake of heavy metals by pseudomonads. Process Biochem 40:955–961

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igwe JC, Nnorom IC, Gbaruko BCG (2005) Kinetics of radionuclides and heavy metals behaviour in soils: implications for plant growth. Afr J Biotechnol 4(B):1541–1547

    CAS  Google Scholar 

  • Issazadeh K, Jahanpour N, Pourghorbanali F, Raeisi G, Faekhondeh J (2013) Heavy metals resistance by bacterial strains. Ann Biol Res 4(2):60–63

    Google Scholar 

  • Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests and ancient, common origin for arsenate reductase. BMC Evol Biol 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322

    Article  CAS  Google Scholar 

  • Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71:3355–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  PubMed  Google Scholar 

  • Jian-hua P, Rui-xia L, Hong-xiao T (2007) Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J Environ Sci 19:403–408

    Article  Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29:888–897

    Article  PubMed  Google Scholar 

  • Jing Zhan J, Qingye Sun S (2012) Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiol Res 167:157–165

    Article  PubMed  CAS  Google Scholar 

  • Jjemba PK (2004) Environmental microbiology principles and applications. Science Publishers, Enfield

    Google Scholar 

  • Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biol Fertil Soils 33:443–453

    Article  CAS  Google Scholar 

  • Jose LM, Teresa H, Aurelia P, Carlos G (2002) Toxicity of cd to soil microbial activity, effect of sewage sludge addition to soil on the ecological dose. Appl Soil Ecol 21:149–158

    Article  Google Scholar 

  • Joshi F, Archana G, Desai A (2006) Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 53:141–147

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (1992) Trace metals in soils in Poland – occurrence and behaviour. Soil Sci 140:53–70

    Google Scholar 

  • Kahlown MA, Ashraf M, Hussain M, Salam HA, Bhatti AZ (2006) Impact assessment of sewerage and industrial effluents on water resources, soil, crops and human health in Faisalabad. Res Report, Pakistan Council Res Water Resour, Islamabad

    Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    Article  CAS  Google Scholar 

  • Kang SY, Lee JU, Kim KW (2007) Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J 36:54–58

    Article  CAS  Google Scholar 

  • Kannan A, Ramteke PW (2002) Uptake of nickel (II) by Serratia marcescens. J Environ Biol 23(1):57–59

    CAS  PubMed  Google Scholar 

  • Kao W-C, Wu J-Y, Chang C-C, Chang J-S (2009) Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli. J Hazard Mater 169(1–3):651–658

    Article  CAS  PubMed  Google Scholar 

  • Kashif SR, Akram M, Yaseen M, Ali S (2009) Studies on heavy metal s status and their uptake by vegetables in adjoining areas of Hudiara drain in Lahore. Soil Environ 28:7–12

    CAS  Google Scholar 

  • Kelly JJ, Haggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipids fatty acid profiles. Biol Fertil Soils 38:65–71

    Article  CAS  Google Scholar 

  • Kennedy AC, Papendick RI (1995) Microbial characteristics of soil quality. J Soil Water Conserv 50:243–248

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Scullion J (1999) Microbial activity in grassland soil amended with sewage sludge containing varying rates and combinations of Cu Ni and Zn. Biol Fertil Soils 30:202–209

    Article  CAS  Google Scholar 

  • Khan MJ, Bhatti AU, Hussain S, Wasiullah (2007) Heavy metal contamination of soil and vegetables with industrial effluents from sugar mill and tanneries. Soil Environ 26:139–145

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kibria MG, Osman KT, Ahmed MJ (2007) Cadmium and lead uptake by radish (Raphanus sativus L.) grown in three different textured soils. Soil Environ 26:106–114

    Google Scholar 

  • Kilic NK, Stensballe A, Otzen DE, Donmez G (2009) Proteomic changes in response to chromium(VI) toxicity in Pseudomonas aeruginosa. Bioresour Technol 101:2134–2140

    Article  PubMed  CAS  Google Scholar 

  • Kim SO, Moon SH, Kim KW (2001) Removal of heavy metals from soils using enhanced electrokinetic soil processing. Water Air Soil Pollut 125:259–272

    Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46

    Article  CAS  Google Scholar 

  • Kiran I, Akar T, Tunali S (2005) Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem 40:3550–3558

    Article  CAS  Google Scholar 

  • Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res 420:37–48

    Article  CAS  PubMed  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon from apricot stone. Bioresour Technol 96:1518–1521

    Article  CAS  PubMed  Google Scholar 

  • Koomen I, McGrath SP, Giller KE (1990) Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biol Biochem 22:871–873

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  PubMed  Google Scholar 

  • Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Article  Google Scholar 

  • Kozdrój J, van Elsas JD (2001a) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Article  PubMed  Google Scholar 

  • Kozdrój J, van Elsas JD (2001b) Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling. Appl Soil Ecol 17:31–42

    Article  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Kulp TR, Hoeft SE, Asad M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Miller LG, Oremland RS (2008) Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake. California Science 321:967–970

    CAS  PubMed  Google Scholar 

  • Kurek E, Bollag JM (2004) Microbial immobilization of cadmium released from CdO in the soil. Biogeochemistry 69(2):227–239

    Article  CAS  Google Scholar 

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    Article  CAS  Google Scholar 

  • Lakzian A, Murphy P, Giller KE (2007) Transfer and loss of naturally-occurring plasmids among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils. Soil Biol Biochem 39:1066–1077

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law GTW, Geissler A, Lloyd JR, Livens FR, Boothman C, Begg JDC, Denecke MA, Rothe JR, Dardenne K, Burke IT, Charnock JM, Morris K (2010) Geomicrobiological redox cycling of the transuranic element neptunium. Environ Sci Technol 44:8924–8929

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DA, Mccabe MJ Jr (2002) Immunomodulation by metals. Int Immunopharmacol 2:293–302

    Article  CAS  PubMed  Google Scholar 

  • Laws AE (1992) Microbial transport of toxic metals. In: Mitchell R (ed) Environmental microbiology. Wiley, New York

    Google Scholar 

  • Lebedeva L (1979) Crocoite reduction by a culture of Pseudomonas chromatophila sp. nov. Mikrobiologiia 48:517–522

    CAS  PubMed  Google Scholar 

  • Lee JS, Chon HT, Kim KW (2005a) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ Geochem Health 27:185–191

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Choi JC, Lee KK (2005b) Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea. Environ Geochem Health 27:237–257

    Article  CAS  PubMed  Google Scholar 

  • Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  CAS  PubMed  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YW, Kim BK, Kim C, Jung HS, Kim B-S, Lee J-H, Chun J (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289

    Article  PubMed  Google Scholar 

  • Lin CC, Lai YT (2006) Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J Hazard Mater 137:99–105

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Olson BH (1995) Occurrence of cop-like resistance genes among bacteria isolated from a water distribution system. Can J Microbiol 41:642–646

    Article  CAS  Google Scholar 

  • Linnik PN (2003) Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies. Anal Bioanal Chem 376:402–412

    Article  CAS  Google Scholar 

  • Liu Y (2006) Shrinking arable lands jeopardizing China’s food security. Available: http://www.worldwatch.org/node/3912.. Accessed 17 Nov 2009

  • Liu HL, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–201

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Lovley DR, Macaskie LE, Allen I, Laskin JWB, Geoffrey MG (2003) Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Pearce CI, Coker VS, Pattrick RAD, van der Laan G, Cutting R, Vaughan DJ, Paterson-Beedle M, Mikheenko IP, Yong P, Macaskie LE (2008) Biomineralization: linking the fossil record to the production of high value functional materials. Geobiology 6:285–297

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lone MI, He ZI, Peter J, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220

    Article  CAS  Google Scholar 

  • Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loukidou MX, Karapantsios TD, Zouboulis AI, Matis KA (2004) Diffusion kinetic study of chromium (VI) biosorption by Aeromonas caviae”. Ind Eng Chem Res 242:93–104.

    CAS  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–300

    Article  CAS  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microbial Physiol 49:219–286

    Article  CAS  Google Scholar 

  • Lu WB, Shi JJ, Wang CH, Chang JS (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Macur RE, Wheeler JT, McDermott TR (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms, 10th edn. Pearson Education, Inc., Upper Sadle River

    Google Scholar 

  • Mahmood T (2010) Phytoextraction of heavy metals – the process and scope for remediation of contaminated soils. Soil Environ 29(2):91–109

    CAS  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic, San Diego, p 405

    Google Scholar 

  • Malik A, Jaiswal R (2000) Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World J Microbiol Biotechnol 16:177–182

    Article  CAS  Google Scholar 

  • Manahan SE (2004) Environmental chemistry, 8th edn. CRC Press, LLC, Boca Raton

    Google Scholar 

  • Mann H (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, pp 93–137

    Google Scholar 

  • Maraziot C (1998) Heavy metal tolerance and uptake by soil bacteria. Institute of Bio Science and Technology, Cranfield University.

    Google Scholar 

  • Marcin C, Marcin G, Justyna MP, Katarzyna K, Maria N (2013) Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol 64:7–14

    Article  Google Scholar 

  • Marwijk JV, Opperman D, Piater L, van Heerden E (2009) Reduction of vanadium(V) by Enterobacter cloacae EV-SA01 isolated from a South African deep gold mine. Biotechnol Lett 31:845–849

    Article  CAS  PubMed  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1990) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 24:91–96

    Article  CAS  Google Scholar 

  • Mc Eldowney S (1993) Microbial biosorption of radionuclides in liquid effluent treatment. Appl Biochem Technol 26:159–180

    Article  Google Scholar 

  • McBeth JM, Lear G, Lloyd JR, Livens FR, Morris K, Burke IT (2007) Technetium reduction and reoxidation in aquifer sediments. Geomicrobiol J 24:189–197

    Article  CAS  Google Scholar 

  • McEldowney S, Hardman DJ, Waite S (1993) Treatment technologies. In: McEldowney S, Hardman DJ, Waite S (eds) Pollution, ecology and biotreatment. Longman Singapore, Singapore, pp 48–58

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • McKeehan P (2000) The financial, legislative and social aspects of the redevelopment of contaminated commercial and industrial properties, available: http://www.csa.com/discoveryguides/brown/overview.php. Accessed 17 Nov 2009

  • Merroun ML (2007) Communicating current research and educational topics and trends in applied microbiology. (Méndez-Vilas A (ed)). Formatex, Badajoz, pp 108–119

    Google Scholar 

  • Miller JR, Hudson-Edwards KA, Lechler PJ, Preston D, Macklin MG (2004) Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin, Bolivia. Sci Total Environ 320:189–209

    Article  CAS  PubMed  Google Scholar 

  • Mirete S, de Figueras CG, González-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73 (19): 6001–6011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Doble M (2008) Novel chromium tolerant microorganisms, isolation, characterization and their biosorption capacity. Ecotoxicol Environ Saf 71:874–879

    Article  CAS  PubMed  Google Scholar 

  • Moffet BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43:13–19

    Article  Google Scholar 

  • Moffett BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ (2006) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43:13–19

    Article  Google Scholar 

  • Morel FMM (2008) The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology 6:318–324

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater, an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Murphy EA (1993) Effectiveness of flushing on reducing lead and copper levels in school drinking water. Environ Health Perspect 101:240–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nageswaran N, Ramteke PW, Verma OP, Pandey A (2012) Antibiotic susceptibility and heavy metal tolerance pattern of Serratia Marcescens isolated from soil and water. J Bioremed Biodegr 3(7):1–5

    Article  CAS  Google Scholar 

  • Nakajima A, Tsuruta T (2004) Competitive biosorption of thorium and uranium by Micrococcus luteus. J Radioanal Nucl Chem 260:13–18

    Article  CAS  Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significanceof the biological activity in soil. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 293–355. (8) (PDF) Microbial Diversity and Soil Functions. Available from: https://www.researchgate.net/publication/228781077_Microbial_Diversity_and_Soil_Functions. Accessed Sep 04 2019

    Chapter  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (1995) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Loretta L, Giacomo P, Giancarlo R (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nas B, Berktay A, Aygun A, Karabork H, Ekercin S (2009) Seasonal and spatial variability of metals concentrations in Lake Beyşehir. Turkey Environ Technol 30(4):345–353

    Article  CAS  PubMed  Google Scholar 

  • Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Article  Google Scholar 

  • Nawrot T, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration, environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Niklińska M, Chodak M, Laskowski R (2005) Characterization of the forest humus microbial community in a heavy metal polluted area. Soil Biol Biochem 37:2185–2194

    Article  CAS  Google Scholar 

  • O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001) Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil 232:135–145

    Article  CAS  Google Scholar 

  • Oliveira PH, Batagov A, Ward J, Baganz F, Krabben P (2006) Identification of erythrobactin, a hydroxamate-type siderophore produced by Saccharopolyspora erythraea. Lett Appl Microbiol 42:375–380

    Article  CAS  PubMed  Google Scholar 

  • Oliver MA (1997) Soil and human health, a review. Euro J Soil Sci 48:573–592

    Article  CAS  Google Scholar 

  • Olson BH, Thronton I (1982) The resistance patterns to metals of bacterial populations in contaminated land. J Soil Sci 33:271–277

    Article  CAS  Google Scholar 

  • Onta H, Hattori T (1983) Oligotrophic bacteria on organic debris and plant roots in paddy field. Soil Biol Biochem 1:1–8

    Google Scholar 

  • Oremlandand RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  Google Scholar 

  • Ortega-Larrocea MP, Siebe C, Estrada A, Webster R (2007) Mycorrhizal inoculum potential of arbuscular mycorrhizal fungi in soils irrigated with wastewater for various lengths of time, as affected by heavy metals and available P. Appl Soil Ecol 37:129–138

    Article  Google Scholar 

  • Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozdemir G, Baysal SH (2004) Chromium and aluminum biosorption on Chryseomonas luteola TEM05. Appl Microbiol Biotechnol 64:599–603

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir S, Kilinc E, Poli A, Nicolaus B, Guvena K (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis, equilibrium, kinetic and thermodynamic studies. Chem Eng J 152:195–206

    Article  CAS  Google Scholar 

  • Ozkutlu F, Turan M, Korkmaz K, Huang YM (2009) Assessment of heavy metal accumulation in the soils and hazelnut (Corylusavellena L.) from Black Sea coastal region of Turkey. Asian J Chem 21:4371–4388

    CAS  Google Scholar 

  • Öztürk A (2007) Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J Hazard Mater 147:518–523

    Article  PubMed  CAS  Google Scholar 

  • Öztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolorA3(2). Colloid Surf B Physicochem Eng Aspect 34:105–111

    Article  CAS  Google Scholar 

  • Pankhurst CE, Doube BM, Gupta VVSR (1997) Biological indicators of soil health: synthesis. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 419–435

    Google Scholar 

  • Pawloska TE, Charvat I (2004) Heavy metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  CAS  Google Scholar 

  • Pearce CI, Coker VS, Charnock JM, Pattrick RAD, Mosselmans JFW, Law N, Beveridge TJ, Lloyd J (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155–603

    Google Scholar 

  • Pearce CI, Pattrick RAD, Law N, Charnock JM, Coker VS, Fellowes JW, Oremland RS, Lloyd JR (2009) Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypical. Environ Technol 30:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Pennanen T (2001) Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH-a summary of the use of phospholipids fatty acid, biology and H-thymidine incorporation methods in field studies. Geoderma 100:91–126

    Article  CAS  Google Scholar 

  • Pennanen T, Frostegard A, Fritz H, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428

    Google Scholar 

  • Pennanen T, Perkiomaki J, Kiikkila O, Vanhala P, Neuvonen S, Fritze H (1998) Prolonged, simulated acid rain and heavy metal deposition: separated and combined effects on forest soil microbial community structure. FEMS Microbiol Ecol 27:291–300

    Article  CAS  Google Scholar 

  • Pérez-de-Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals, effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Article  CAS  Google Scholar 

  • Pires C (2010) Bacteria in heavy metal contaminated soil: diversity, tolerance and use in remediation systems. PhD thesis. Cranfield University

    Google Scholar 

  • Pokrovsky OS, Pokrovski GS, Feurtet-Mazel A (2008) A structural study of cadmium interaction with aquatic microorganisms. Environ Sci Technol 42(15):5527–5533

    Article  CAS  PubMed  Google Scholar 

  • Poole RK, Gadd GM (1989) Metals: microbe interactions. IRL, Oxford, pp 1–37

    Google Scholar 

  • Preston S, Wirth S, Ritz K, Griffiths BS, Young IM (2001) The role played by microorganisms in the biogenesis of soil cracks: importance of substrate quantity and quality. Soil Biol Biochem 33:1851–1858

    Article  CAS  Google Scholar 

  • Quintelas C, Zélia Rocha Z, Silva B, Fonseca B, Figueiredo H, Tavares T (2009) Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem Eng J 149:319–324

    Article  CAS  Google Scholar 

  • Ragnarsdottir KV, Hawkins D (2005) Trace metals in soils and their relationship with scrapie occurrence. Geochim Cosmochim Acta 69:A196

    Google Scholar 

  • Rajaratnam G, Winder C, An M (2002) Metals in drinking water from new housing estates in the Sydney area. Environ Res 89:165–170

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ram RJ, Verberkmoes NC, Thelen MP et al (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Ramteke PW (1997) Plasmid mediated co-transfer of antibiotic resistance and heavy metal tolerance in coliforms. Ind J Microbiol 37:177–181

    Google Scholar 

  • Ramteke PW, Maurice N (2014) Heavy metals in sediments of Lake Priyadarshini, Indian Antarctic Station “Maitri”. Ind J Soil Conserv 42(1):1–4

    Google Scholar 

  • Ramteke PW, Awasthi S, Srinath T, Joseph B (2010) Efficiency assessment of common effluent treatment plant (CETP) treating tannery effluents. Environ Monit Assess 169:125–131

    Article  CAS  PubMed  Google Scholar 

  • Ranjard L, Nazaret S, Cournoyer B (2003) Freshwater bacteria can methylate selenium through the thiopurine methyltransferase pathway. Appl Environ Microbiol 69:3784–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Barua S, Sani RK, Peyton BM (2011) Investigation of microbial populations in the extremely metal-contaminated Coeur d’Alene River sediments. Microb Ecol 62:1–13

    Article  PubMed  Google Scholar 

  • Rathnayake IVN, Megharaj M, Bolan N, Naidu R (2009) Tolerance of heavy metals by gram positive soil Bacteria. World Acad Sci Eng Technol 29:1179–1183

    Google Scholar 

  • Reith F, Rogers SL, McPhail DC, Weeb D (2006) Biomineralization of gold, biofilms on bacterioform. Gold Sci 313:233–236

    CAS  Google Scholar 

  • Renella G, Mench M, Gelsomino A, Landi L, Nannipieri P (2005) Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol Biochem 37:1498–1506

    Article  CAS  Google Scholar 

  • Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal- contaminated soils. Microb Ecol 37:218–224

    Article  CAS  PubMed  Google Scholar 

  • Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603

    Article  CAS  PubMed  Google Scholar 

  • Roane TM, Pepper IL (1999) Microorganisms and metal pollutants. In: Maier RM, Gerba CP, Pepper IA (eds) Environmental microbiology. Academic press, San Diego, California, London, pp 403–423

    Google Scholar 

  • Roane TM, Pepper IL (2000) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364. 2005

    Article  Google Scholar 

  • Robards K, Worsfold P (1991a) Cd, toxicology and analysis – a review. Analyst 116:549–568

    Article  CAS  PubMed  Google Scholar 

  • Robards K, Worsfold P (1991b) Cd, toxicology and analysis – a review. Analyst Vol 116:549–568

    Article  CAS  Google Scholar 

  • Robinson B, Russell C, Hedley M, Clothier B (2001) Cadmium adsorption by rhizobacteria, implications for New Zealand pastureland. Agric Ecosyst Environ 87:315–321

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  PubMed  Google Scholar 

  • Romanenko K (1977) Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions. Mikrobiologiia 46:414–417

    CAS  PubMed  Google Scholar 

  • Rosborg I, Nihlgard B, Gerhardsson L (2003) Inorganic constituents of well water in one acid and one alkaline area of South Sweden. Water Air Soil Pollut 142:261–277

    Article  CAS  Google Scholar 

  • Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Şahin Y, Öztürk A (2005) Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochem 40:1895–1901

    Article  CAS  Google Scholar 

  • Sandaa RA, Torsvik V, Enger Ø, Daae FL, Castberg T, Hahn D (1999a) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  CAS  PubMed  Google Scholar 

  • Sandaa RA, Enger Ø, Torsvik V (1999b) Abundance and Diversity of Archaea in Heavy-Metal- Contaminated Soils. Appl Environ Microbiol 65(8):3293–3297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandaa RA, Torsvik V, Enger Ø (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295

    Article  CAS  Google Scholar 

  • Sá-Pereiraa P, Rodriguesab M, Simõesa F, Dominguesb L, Castro IV (2010) Bacterial activity in heavy metals polluted soils: metal efflux Systems in Native Rhizobial Strains. Geomicrobiol J 26:281–288

    Article  CAS  Google Scholar 

  • Sarathchandra SU, Watkinson JH (1981) Oxidation of elemental selenium to selenite by Bacillus megaterium. Science 211:600–601

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Chakraborty R (2008) Quorum sensing in metal tolerance of Acinetobacter junii BB1A is associated with biofilm production. FEMS Microbiol Lett 282:160–165

    Article  CAS  PubMed  Google Scholar 

  • Sarret G, Avoscan L, Carriere M, Collins R, Geoffroy N, Carrot F, Covèsand J, Gouget B (2005) Chemical forms of selenium in the metal-resistant – 220 – bacterium Ralstonia metallidurans CH34 exposed to selenite and selenite. Appl Environ Microbiol 71:2331–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption processes for heavy metal removal. In: Lovley DE (ed) Environmental microbe–metal interactions. ASM, Washington, DC, pp 329–362

    Chapter  Google Scholar 

  • Schmidt U (2003) Enhancing phytoremediation: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  PubMed  Google Scholar 

  • Schröder I, Rech S, Kraff T, Macy JM (1997) Purification and characterization of the selenate reductase from Thaueraselenatis. J Biol Chem 272:23765–23768

    Article  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses, heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249(1):27–35

    Article  CAS  Google Scholar 

  • Seget ZPM, Cycon M, Kozdro J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246

    Article  Google Scholar 

  • Seifert B, Becker K, Helm D, Krause C, Schulz C, Seiwert M (2000) The German environmental survey 1990/1992 (GerES II), reference concentrations of selected environmental pollutants in blood, urine, hair, house dust, drinking water and indoor air. J Expo Anal Environ Epidemiol 10:552–565

    Article  CAS  PubMed  Google Scholar 

  • Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004a) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24

    Article  CAS  Google Scholar 

  • Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A (2004b) Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochem 39:1643–1651

    Article  CAS  Google Scholar 

  • Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y (2004c) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19:127–135

    Article  CAS  Google Scholar 

  • Sevgi E, Coral G, Gizir AM, Sangün MK (2010) Investigation of heavy metal resistance in some bacterial strains isolated from industrial soils. Turk J Biol 34:423–431

    CAS  Google Scholar 

  • Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 164:224–234

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2006) Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull Environ Contam Toxicol 77(2):312–318

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    Article  CAS  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P (2008) Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun 372(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchuk IA, Klimenko NI (2009) Biological features of sorption of U (VII) and strontium ions by Bacillus polymyxa IMV 8910 cells. J Water Chem Technol 31:324–328

    Article  Google Scholar 

  • Silva RMP, Rodríguez AA, De Oca JMGM, Moreno DC (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosaAT18 isolated from a site contaminated with petroleum. Bioresour Technol 100:1533–1538

    Article  CAS  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation, an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    Article  CAS  PubMed  Google Scholar 

  • Sirianuntapiboon S, Ungkaprasatcha O (2007) Removal of Pb2+ and Ni2+ by bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems. Bioresour Technol 98:2749–2757

    Article  CAS  PubMed  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La ampa, Argentina. Appl Geochem 17:259–284

    Article  CAS  Google Scholar 

  • Smejkalova M, Mikanova O, Boruvka L (2003) Effect of heavy metal concentration on biological activity of soil microorganisms. Plant Soil Environ 49:321–326

    Article  CAS  Google Scholar 

  • Smith SR (1991) Effects of sewage sludge application on soil microbial processes and soil fertility. Adv Soil Sci 16:191–212

    Article  Google Scholar 

  • Smith SR (1996) Agricultural recycling of sewage sludge and the environment. CAB Internaltional, Wallingford

    Google Scholar 

  • Smolders E, Degryse F (2002) Fate and effect of zinc from tire debris in soil. Environ Sci Technol 36:3706–3710

    Article  CAS  PubMed  Google Scholar 

  • Snoeyenbos-West OL, Nevin KP, Anderson RT, Lovley DR (2000) Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microbiol Ecol 39:153–167

    Article  CAS  Google Scholar 

  • Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2002) Chromium (VI) accumulation by Bacillus circulans: effect of growth conditions. Ind J Microbiol 42:141–146

    Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  PubMed  PubMed Central  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Streets DG, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988

    Article  CAS  PubMed  Google Scholar 

  • Sun HF, Li YH, Ji YF, Yang LS, Wang WY (2009) Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province. Huan Jing KeXue 30(4):1159–1165

    CAS  Google Scholar 

  • Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  CAS  PubMed  Google Scholar 

  • Sutherland RA, Day JP, Bussen JO (2003) Lead concentrations, isotope ratios and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water Air Soil Pollut 142:165–186

    Article  CAS  Google Scholar 

  • Szili-Kovacs T, Anton A, Gulyas F (1999) Effect of Cd, Ni and Cu on some microbial properties of a calcareous chernozem soil. (Ed.): J. Kubat. In: Proceedings of the 2nd Symp on the “Pathways and Consequences of the Dissemination of Pollutants in the Biosphere,” Prague, pp 82–102

    Google Scholar 

  • Tarah S, Sullivan TS, Murray B, McBride MB, Janice E, Thies JE (2013) Rhizosphere microbial community and Zn uptake by willow (Salix purpurea L.) depend on soil sulfur concentrations in metalliferous peat soils. Appl Soil Ecol 67:53–60

    Article  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  CAS  PubMed  Google Scholar 

  • Teng Y, Ni S, Zhang C, Wang J, Lin X, Huang Y (2006) Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China. Chin J Geochem 25:379–385

    Article  Google Scholar 

  • Tewari S, Ramteke PW, Garg SK (2003) Effect of disinfectants on stability and transmissibility of R-plasmid in E. coli isolated from drinking water. Ind J Experiment Biol 41:225–228

    CAS  Google Scholar 

  • Tewari S, Ramteke PW, Tripathi M, Kumar S, Garg SK (2013) Plasmid mediated transfer of antibiotic resistance and heavy metal tolerance in thermotolerant water borne coliforms. Afr J Microbiol Res 7(2):130–136

    Article  CAS  Google Scholar 

  • Tobler NB, Hofstetter TB, Straub KL, Fontana D, Schwarzenbach RP (2007) Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions. Environ Sci Technol 41:7765–7772

    Article  CAS  PubMed  Google Scholar 

  • Top E, Mergeay M, Springael D, Verstraete W (1990) Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl Environ Microbiol 56(8):2471–2479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity magnitude, dynamics and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in Gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AGA (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A 2 Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  PubMed  CAS  Google Scholar 

  • Tripathi B, Kim M, Singh D (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol 64:474–484

    Article  PubMed  Google Scholar 

  • Tsai Y-P, You S-J, Pai T-Y, Chen K-W (2005) Effect of cadmium on composition and diversity of bacterial communities in activated sludges. Int Biodeterior Biodegrad 55:285–291

    Article  CAS  Google Scholar 

  • Tsuruta T (2011) Biosorption of uranium for environmental applications using Bacteria isolated from the uranium deposits. In: Ahmad I, Ahmad F, Pichtel JJ (eds) Microbes and microbial technology, agricultural and environmental applications. Springer, New York/Dordrecht/Heidelberg/London, pp 267–281

    Chapter  Google Scholar 

  • Turan M, AhmetEsitken A, Sahin F (2012) Plant growth promoting rhizobacteria as alleviators for soil degradation. In: Maheshwari DK (ed) Bacteria in agrobiology, stress management. Springer, Berlin/Heidelberg, pp 41–63

    Chapter  Google Scholar 

  • Tuzen M, Verep B, Ogretmen AO, Soylak M (2009) Trace element content in marine algae species from the Black Sea, Turkey. Environ Monit Assess 151(1–4):363–368

    Article  PubMed  CAS  Google Scholar 

  • Tyler G, Balsberg Pahlsson AM, Bengtsson G, Baath E, Tranvilk L (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates (a review). Water Air Soil Pollut 47:189–215

    Article  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida, effect of temperature. J Hazard Mater 135:87–93

    Article  CAS  PubMed  Google Scholar 

  • Uzel A, Ozdemir G (2009) Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresour Technol 100:542–548

    Article  CAS  PubMed  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  PubMed  Google Scholar 

  • Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96:205–226

    Article  PubMed  CAS  Google Scholar 

  • Vega-López A, Amora-Lazcano E, López-López E, Terrón O, Proal-Nájera JB (2007) Toxic effects of zinc on anaerobic microbiota from Zimapán reservoir (Mexico). Anaerobe 13:65–73

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Henk Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:1–9

    Article  CAS  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2002) Effect of ecological factors on conjugal transfer of chromium-resistant plasmid in Escherichia coli isolated from tannery effluent. Appl Biochem Biotech 102–103:5–20

    Article  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2008) Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environ Monit Assess 145:243–249

    Article  CAS  PubMed  Google Scholar 

  • Verma T, Garg SK, Ramteke PW (2009) Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J Appl Microbiol 107:1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Verstraete W, Top EM (1999) Soil clean-up: lessons to remember. Int Biodeterior Biodegrad 43:147–153

    Article  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008a) A. Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008b) B. Biosorption of C.I. reactive black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pigments 76:726–732

    Article  CAS  Google Scholar 

  • Viklander M (1998) Particle size distribution and metal content in street sediments. J Environ Eng 124:761–766

    Article  CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M (2005) J. Lloret “polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression”. Appl Environ Microbiol 71:2687–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virkutyte J, Sillanpaa M (2006) Chemical evaluation of potable water in eastern Qinghai Province, China, human health aspects. Environ Int 32:80–86

    Article  CAS  PubMed  Google Scholar 

  • von Canstein H, Li Y, Leonhauser J, Haase E, Felske A, Deckwer WD, Wagner-Dobler I (2002) Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl Environ Microbiol 68:1938–1946

    Article  CAS  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramirez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581

    Article  CAS  PubMed  Google Scholar 

  • Wagner-Dobler I, von Canstein H, Li Y, Timmis KN, Deckwer WD (2000) Removal of mercury from chemical wastewater by microorganisms in technical scale. Environ Sci Technol 34:4628–4634

    Article  Google Scholar 

  • Wainwright M, Gadd GM (1997) Industrial pollutants. In: Wicklow DT, Soderstrom B (eds) The Mycota, Vol. IV. Environmental and microbial relationships. Springer, Berlin, pp 86–97

    Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  CAS  PubMed  Google Scholar 

  • Wang YT (2000) Microbial reduction of Cr(VI). In: Loveley DR (ed) Environmental microbe metal interactions. ASM Press, Washington, DC, pp 225–235

    Chapter  Google Scholar 

  • Wang F, Yao J, Si Y, Chen H, Russel M, Chen K, Qian Y, Zaray G, Bramanti E (2010) Short-time effect of heavy metals upon microbial community activity. J Hazard Mater 173:510–516

    Article  CAS  PubMed  Google Scholar 

  • Wanty RB, Goldhaber MB (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim Cosmochim Acta 56:1471–1483

    Article  CAS  Google Scholar 

  • Watts MP, Lloyd JR (2013) In: Gescher J, Kappler A (eds) Metal Respiration. Springer, Berlin Heidelberg, pp 161–201

    Chapter  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  PubMed  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • White PJ (2012) In: Shabala S (ed) Plant stress physiology. CAB International, Cambridge, MA, pp 210–237

    Chapter  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes, the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (1997) Health and environment in sustainable development. WHO, Geneva

    Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality. Vol. 1, Recommendations, − 3rd ed. Available at http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/index.html

  • Wijayawardena MAA, Megharaj M, Naidu R (2016) Exposure, toxicity, health impacts and bioavailability of heavy metal mixtures. In: Sparks DL (ed) Advances in agronomy, vol 138. Academic Press, London, pp 175–234, ISBN 978-0-12-804774-3

    Google Scholar 

  • Wilson D (1995) Endophyte-the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Witter E, Gong P, Bååth E, Marstorp H (2000) A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environ Toxicol Chem 19:1983–1991

    Article  CAS  Google Scholar 

  • Woo NC, Choi MJ (2001) Arsenic and metal contamination of water resources from mining wastes in Korea. Environ Geol 40:305–311

    Article  CAS  Google Scholar 

  • Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus Lactilyticus I. J Bacteriol 84:647–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  PubMed  Google Scholar 

  • Wuertz S, Mergeay M (1997) The impact of heavy metals on soil microbial communities and their activities. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 607–639

    Google Scholar 

  • Wyszkowska J, Kucharski J, Jastrzębska E, Hlasko A (2001) The biological properties of soil as influenced by chromium contamination. Pol J Environ Stud 10(1):37–42

    CAS  Google Scholar 

  • Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    Article  CAS  PubMed  Google Scholar 

  • Xin-Xian L, Yu-Gang Z, Dai J, Qixing Z (2009) Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions. Bull Environ Contam Toxicol 82:460–467

    Article  CAS  Google Scholar 

  • Yan Z, Xuliang F, Zhilong Y, Yahong L, Weimin C (2008) Biosorption of Cu(II) on extracellular polymers from Bacillus sp. F19. J Environ Sci 20:1288–1293

    Article  Google Scholar 

  • Yan-de J, Zhen-li, Xiao-e Y (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soil. J Zhejiang Univ Sci B 8:192–207

    Google Scholar 

  • Yanez L, Ortiz D, Calderon J, Batres L, Carrizales L, Mejia J (2002) Overview of human health and chemical mixtures, problems facing developing countries. Environ Health Perspect 110(6):901–909

    Article  CAS  Google Scholar 

  • Yang P, Mao R, Shao H, Gao Y (2009) The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont plain, China. C R Biol 332(6):558–566

    Article  CAS  PubMed  Google Scholar 

  • Yao HY, Xu JM, Huang CY (2003) Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils. Geoderma 115:139–148

    Article  CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz EI, Ensari NY (2005) Cadmium biosorption by Bacillus circulans strain EB1. World J Microbiol Biotechnol 21:777–779

    Article  CAS  Google Scholar 

  • Zaets I, Kozyrovska N (2012) In: Zaidi A et al (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 203–216

    Chapter  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Wani PA, Ahemad M (2008) Bioremediation of heavy metals by plant growth promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova Science Publishers, New York, pp 55–90

    Google Scholar 

  • Zamil S, Ahmad SS, Choi MH, Park JY, Yoon SC (2009) Correlating metal ion characteristics with biosorption capacity of Staphylococcus saprophyticusBMSZ711 using QICAR model. Bioresour Technol 100:1895–1902

    Article  CAS  PubMed  Google Scholar 

  • Zarazua G, Avila-Perez P, Tejeda S, Barcelo-Quintal I, Martinez T (2006) Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry. Spectrchim Acta Part B 61:1180–1184

    Article  CAS  Google Scholar 

  • Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F (2008) Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut 156:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Wubet T, Schäfer SH, Savaghebi GR, Jouzani GS, Nekouei MK et al (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  CAS  PubMed  Google Scholar 

  • Zettler LAA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181(4):777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Liu Y, Zeng G, Li X, Xu W, Fan T (2007) Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World J Microbiol Biotechnol 23:43–48.

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

  • Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2865

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, P.K., Misra, P., Maurice, N., Ramteke, P.W. (2019). Heavy Metal Toxicity and Possible Functional Aspects of Microbial Diversity in Heavy Metal-Contaminated Sites. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_15

Download citation

Publish with us

Policies and ethics