Skip to main content

Superhydrophobic Interfaces for High-Performance/Advanced Application

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Abstract

Nature is full of wonders and scientific excellence. We can acquire a great deal of knowledge by studying it, and such studies help us to ameliorate our understanding to find solutions for the conundrums we face in our everyday life. In this context, bio-inspired (lotus leaf), non-adhesive superhydrophobicity is one such phenomenon which has received wide recognition for its exceptional ability to repel water. Superhydrophobicity has drawn great attention because of its various applications like oil–water separation, smart microfluidics, extended drug release, etc. The coexistence of appropriate chemistry and topography confers this special wettability to the reported materials in the literature. Any sort of perturbation in essential chemistry or topography in the artificial superhydrophobic materials results in loss of high repellency to water. Generally, the hierarchical and rough topography decorated with inert and low surface energy molecules provides the essential metastable trapped air which plays a pivotal role in achieving bio-inspired superhydrophobicity. The micro-/nanofeatures that are made out of mostly hydrophilic ingredients and are topped with low surface energy molecules are vulnerable to physical as well as chemical properties. Such limitations appeared as Achilles’ heels, which is the widely practiced synthetic approaches restricting these materials from prospective applications in practical scenarios. To overcome such practical obstacles, many strategies have been adopted to fabricate highly durable superhydrophobic materials. In this regard, the book chapter is focused to discuss different promising and durable superhydrophobic interfaces and their prospective advance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis SH, Fotakis C (2008) Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20:4049–4054

    Article  CAS  Google Scholar 

  2. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24:4114–4119

    Article  CAS  Google Scholar 

  3. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182

    Article  CAS  Google Scholar 

  4. Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A, Bohn HF (2010) The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater 22:2325–2328

    Article  CAS  Google Scholar 

  5. Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36

    Article  CAS  Google Scholar 

  6. Helbig R, Nickerl J, Neinhuis C, Werner C (2011) Smart skin patterns protect springtails. PLoS One 6:e25105

    Article  CAS  Google Scholar 

  7. Cheng Q, Li M, Zheng Y, Su B, Wang S, Jiang L (2011) Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter 7:5948–5951

    Article  CAS  Google Scholar 

  8. Liu X, Zhou J, Xue Z, Gao J, Meng J, Wang S, Jiang L (2012) Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv Mater 24:3401–3405

    Article  CAS  Google Scholar 

  9. Cai Y, Lin L, Xue Z, Liu M, Wang S, Jiang L (2014) Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv Funct Mater 24:809–816

    Article  CAS  Google Scholar 

  10. Bixler GD, Bhusha B (2012) Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8:11271–11284

    Article  CAS  Google Scholar 

  11. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  12. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  13. Feng L, Zhang ZY, Mai ZH, Ma YM, Liu BQ, Jiang L, Zhu DB (2004) A superhydrophobic and superoleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014

    Article  CAS  Google Scholar 

  14. Zhang Y, Wei S, Liu FJ, Du YC, Liu S, Ji YY, Yokoi T, Tatsumi T, Xiao FS (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today 4:135–142

    Article  CAS  Google Scholar 

  15. Das A, Deka J, Rather AM, Bhunia BK, Saikia PP, Mandal BB, Raidongia K, Manna U (2017) Strategic formulation of graphene oxide sheets for flexible monoliths and robust polymeric coatings embedded with durable bioinspired wettability. ACS Appl Mater Interfaces 9:42354–42365

    Article  CAS  Google Scholar 

  16. Rather AM, Jana N, Hazarika P, Manna U (2017) Sustainable polymeric material for the facile and repetitive removal of oil-spills through the complementary use of both selective-absorption and active-filtration processes. J Mater Chem A 5:23339–23348

    Article  CAS  Google Scholar 

  17. Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617–621

    Article  CAS  Google Scholar 

  18. Yohe ST, Colson YL, Grinstaff MW (2012) Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates. J Am Chem Soc 134:2016–2019

    Article  CAS  Google Scholar 

  19. Yohe ST, Freedman JD, Falde EJ, Colson YL, Grinstaff MW (2013) A mechanistic study of wetting superhydrophobic porous 3D meshes. Adv Funct Mater 23:3628–3637

    Article  CAS  Google Scholar 

  20. Wang H, Zhou H, Gestos A, Fang J, Lin T (2013) Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces 5:10221

    Article  CAS  Google Scholar 

  21. Rather AM, Mahato S, Maji K, Gogoi N, Manna U (2017) ‘Reactive’ nano-complex coated medical cotton: a facile avenue for tailored release of small molecules. Nanoscale 9:16154–16165

    Article  CAS  Google Scholar 

  22. Privett BJ, Youn J, Hong SA, Lee J, Han J, Shin JH, Schoenfisch MH (2011) Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir 27:9597–9601

    CAS  Google Scholar 

  23. Watanabe K, Udagawa Y, Udagawa H (1999) Drag reduction of newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech 381:225–238

    Article  CAS  Google Scholar 

  24. Dong H, Cheng M, Zhang Y, Wei H, Shi F (2013) Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. J Mater Chem A 1:5886–5891

    Article  CAS  Google Scholar 

  25. Lee C, Kim CJ (2011) Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys Rev Lett 106:014502

    Article  CAS  Google Scholar 

  26. Du P, Wen J, Zhang Z, Song D, Ouahsine A, Hu H (2017) Maintenance of air layer and drag reduction on superhydrophobic surface. Ocean Eng 130:328–335

    Article  Google Scholar 

  27. Zhang S, Ouyang X, Li J, Gao S, Han S, Liu L, Wei H (2015) Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir 31:587–593

    Article  CAS  Google Scholar 

  28. Garrod RP, Harris LG, Schofield WCE, McGettrick J, Ward LJ, Teare DOH, Badyal JPS (2007) Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic–superhydrophilic surfaces. Langmuir 23:689–693

    Article  CAS  Google Scholar 

  29. Sarkar D, Mahapatra A, Som A, Kumar R, Nagar A, Baidya A, Pradeep T (2018) Patterned nanobrush nature mimics with unprecedented water-harvesting efficiency. Adv Mater Interfaces 1800667

    Google Scholar 

  30. Maji K, Manna U (2018) Hierarchically featured and substrate independent bulk-deposition of ‘reactive’ polymeric nanocomplexes for controlled and strategic manipulation of durable biomimicking wettability. J Mater Chem A 6:6642–6653

    Article  CAS  Google Scholar 

  31. Park YB, Im H, Im M, Choi YK (2011) Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J Mater Chem 21:633–636

    Article  CAS  Google Scholar 

  32. Drelich J, Chibowski E (2010) Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir 26:18621–18623

    Article  CAS  Google Scholar 

  33. Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Roach P (2005) Porous materials show superhydrophobic to superhydrophilic switching. Chem Commun 25:3135–3137

    Article  CAS  Google Scholar 

  34. Garlisi C, Palmisano G (2017) Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass. Appl Surf Sci 420:83–93

    Article  CAS  Google Scholar 

  35. Adera S, Raj R, Enright R, Wang EN (2013) Non-wetting droplets on hot superhydrophilic surfaces. Nat Commun 4, Article number: 2518

    Google Scholar 

  36. Zhao H, Law KY, Sambhy V (2011) Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Langmuir 27:5927–5935

    Article  CAS  Google Scholar 

  37. Kota AK, Li Y, Mabry JM, Tuteja A (2012) Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Adv Mater 24:5838–5843

    Article  CAS  Google Scholar 

  38. Kota AK, Kwon G, Tuteja A (2014) The design and applications of superomniphobic surfaces. NPG Asia Mater 6:e109

    Article  CAS  Google Scholar 

  39. Choi GR, Park J, Ha JW, Kim WD, Lim H (2010) Superamphiphobic web of PTFEMA fibers via simple electrospinning without functionalization. Macromol Mater Eng 295:995–1002

    Article  CAS  Google Scholar 

  40. Yang J, Zhang Z, Men X, Xu X, Zhu X (2011) A simple approach to fabricate superoleophobic coatings. New J Chem 35:576–580

    Article  CAS  Google Scholar 

  41. Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE (2008) Robust omniphobic surfaces. Proc Natl Acad Sci 105:18200–18205

    Article  CAS  Google Scholar 

  42. Liu TL, Kim CJ (2014) Turning a surface superrepellent even to completely wetting liquids. Science 346:1096–1100

    Article  CAS  Google Scholar 

  43. Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21:665–669

    Article  CAS  Google Scholar 

  44. Cai Y, Lu Q, Guo X, Wang S, Qiao J, Jiang L (2015) Salt-tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (Saccharina japonica). Adv Mater 27:4162–4168

    Article  CAS  Google Scholar 

  45. Yong JL, Chen F, Yang Q, Du G, Shan C, Bian H, Farooq U, Hou X (2015) Bioinspired transparent underwater superoleophobic and anti-oil surfaces. J Mater Chem A 3:9379–9384

    Article  CAS  Google Scholar 

  46. Yong J, Chen F, Yang Q, Farooq U, Hou X (2015) Photoinduced switchable underwater superoleophobicity–superoleophilicity on laser modified titanium surfaces. J Mater Chem A 3:10703–10709

    Article  CAS  Google Scholar 

  47. Reick FG (1976) US Patent, US 3,931,428 A

    Google Scholar 

  48. Zimmermann J, Reifler FA, Fortunato G, Gerhardt L, Seeger S (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18:3662–3669

    Article  CAS  Google Scholar 

  49. Xiu Y, Liu Y, Hess DW, Wong CP (2010) Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology 21:155705

    Article  CAS  Google Scholar 

  50. Bayer IS, Brown A, Steele A, Loth E (2009) Appl Phys Express 2009(2):5003

    Google Scholar 

  51. Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RAH (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23:673–678

    Article  CAS  Google Scholar 

  52. Deng X, Mammen L, Zhao Y, Lellig P, Mullen K, Li C, Butt HJ, Vollmer D (2011) Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv Mater 23:2962–2965

    Article  CAS  Google Scholar 

  53. Yao X, Xu L, Jiang L (2010) Fabrication and characterization of superhydrophobic surfaces with dynamic stability. Adv Funct Mater 20:3343–3349

    Article  CAS  Google Scholar 

  54. Paven M, Fuchs R, Yakabe T, Vollmer D, Kappl M, Itakura AN, Butt HJ (2016) Mechanical properties of highly porous super liquid-repellent surfaces. Adv Funct Mater 26:4914–4922

    Article  CAS  Google Scholar 

  55. Li Y, Li L, Sun J (2010) Bioinspired self-healing superhydrophobic coatings. Angew Chem Int Ed 49:6129–6133

    Article  CAS  Google Scholar 

  56. Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T (2011) Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Ed 50:11433–11436

    Article  CAS  Google Scholar 

  57. Wu M, Li Y, An N, Sun J (2016) Applied voltage and near infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films. Adv Funct Mater 26:6777

    Article  CAS  Google Scholar 

  58. Wang XL, Liu XJ, Zhou F, Liu WM (2011) Self-healing superamphiphobicity. Chem Commun 47:2324–2326

    Article  CAS  Google Scholar 

  59. Manna U, Lynn DM (2013) Restoration of superhydrophobicity in crushed polymer films by treatment with water: self-healing and recovery of damaged topographic features aided by an unlikely source. Adv Mater 25:5104–5108

    Article  CAS  Google Scholar 

  60. Manna U, Carter MCD, Lynn DM (2013) “Shrink-to-Fit” superhydrophobicity: thermally-induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates. Adv Mater 25:3085–3089

    Article  CAS  Google Scholar 

  61. Washo B. D (1982) Highly nonwettable surfaces via plasma polymer vapor deposition. Org Coat Appl Polym Sci Proc 47:69−72

    Google Scholar 

  62. Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir 12:2125–2127

    Article  CAS  Google Scholar 

  63. Vinogradova OI, Bunkin NF, Churaev NV, Kiseleva OA, Lobeyev AV, Ninham BW (1995) Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. J Colloid Interface Sci 173:443–447

    Article  CAS  Google Scholar 

  64. Young T (1805) An essay on the cohesion of fluid. Philos Trans R Soc London 95:65–87

    Article  Google Scholar 

  65. Wang JN, Zhang YL, Liu Y, Zheng W, Lee LP, Sun HB (2015) Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale 7:7101–7114

    Article  CAS  Google Scholar 

  66. Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem 53:1466–1467

    Article  CAS  Google Scholar 

  67. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–550

    Article  CAS  Google Scholar 

  68. Lundgren M, Allan NL, Cosgrove T, George N (2003) Molecular dynamics study of wetting of a pillar surface. Langmuir 19:7127–7129

    Article  CAS  Google Scholar 

  69. Koch K, Bhushan B, Jung YC, Barthlott W (2009) Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5:1386–1393

    Article  CAS  Google Scholar 

  70. Li XM, David Reinhoudt, Crego-Calama M (2007) What do we need for a superhydrophobic surface? a review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368

    Article  Google Scholar 

  71. Minko S, Muller M, Motornov M, Nitschke M, Grundke K, Stamm M (2003) Two-level structured self-adaptive surfaces with reversibly tunable properties. J Am Chem Soc 125:3896

    Article  CAS  Google Scholar 

  72. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21:8978–8981

    Article  CAS  Google Scholar 

  73. Singh M, Sun Y, Wang J (2012) Superconductivity in nanoscale systems. Superconductors- properties, technology, and applications 105-136 ISBN: 978-953-51-0545-9

    Google Scholar 

  74. Subramani K, Ahmed W (2012) Fabrication of peg hydrogel micropatterns by soft-photolithography and peg hydrogel as guided bone regeneration membrane in dental implantology. Emerging Nanotechnologies Dentistry Chapter 11:171–187

    Article  Google Scholar 

  75. Eichelsdoerfer DJ, Liao X, Cabezas MD, Morris W, Radha B, Brown KA, Giam LR, Braunschweig AB, Mirkin CA (2013) Large-area molecular patterning with polymer pen lithography. Nat Protocols 8:2548–2560

    Article  CAS  Google Scholar 

  76. Tian D, Song Y, Jiang L (2013) Patterning of controllable surface wettability for printing techniques. Chem Soc Rev 42:5184–5209

    Article  CAS  Google Scholar 

  77. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protocols 5:491–502

    Article  CAS  Google Scholar 

  78. Vlad A, Mátéfi‐Tempfli M, Antohe VA, Faniel S, Reckinger N, Olbrechts B, Crahay A, Bayot V, Piraux L, Melinte S, Mátéfi‐Tempfli S (2008) Nanowire‐decorated microscale metallic electrodes. Small 4: 557–560

    Article  CAS  Google Scholar 

  79. Ma Z, Jiang C, Yuan W, He Y (2013) Large-scale patterning of hydrophobic silicon nanostructure arrays fabricated by duallithography and deep reactive ion etching. Nano-Micro Lett 5:7–12

    Article  CAS  Google Scholar 

  80. Öner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16:7777–7782

    Article  CAS  Google Scholar 

  81. Pozzato A, Zilio SD, Fois G, Vendramin D, Mistura G, Belotti M, Chen Y, Natali M (2006) Superhydrophobic surfaces fabricated by nanoimprint lithography. Microelectron Eng 83:884–888

    Article  CAS  Google Scholar 

  82. Choi CH, Kim CJ (2006) Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17:5326–5333

    Article  CAS  Google Scholar 

  83. Men X, Zhang Z, Yang J, Zhu X, Wang K, Jiang W (2011) Spray-coated superhydrophobic coatings with regenerability. New J Chem 35:881–886

    Article  CAS  Google Scholar 

  84. Zhang X, Zhang J, Ren Z, Li X, Zhang X, Zhu D, Wang T, Tian T, Yang B (2009) Morphology and wettability control of silicon cone arrays using colloidal lithography. Langmuir 25:7375–7382

    Article  CAS  Google Scholar 

  85. Wang J, Chen X, Kang Y, Yang G, Yu L, Zhang P (2010) Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films. Appl Surf Sci 257:1473–1477

    Article  CAS  Google Scholar 

  86. Zhang H, Zeng X, Gao Y, Shi F, Zhang P, Chen JF (2011) A facile method to prepare superhydrophobic coatings by calcium carbonate. Ind Eng Chem Res 50:3089–3094

    Article  CAS  Google Scholar 

  87. Shi F, Chen X, Wang L, Niu J, Yu J, Wang Z, Zhang X (2005) Roselike microstructures formed by direct in situ hydrothermal synthesis: from superhydrophilicity to superhydrophobicity. Chem Mater 17:6177–6180

    Article  CAS  Google Scholar 

  88. Zhu S, Yang X, Li T, Li F, Cao W (2017) Phase and morphology controllable synthesis of superhydrophobic Sb2O3 via a solvothermal method. J Alloys Compd 721:149–156

    Article  CAS  Google Scholar 

  89. Lopez-Torres D, Elosua C, Hernaez M, Goicoechea J, Arregui FJ (2015) From superhydrophilic to superhydrophobic surfaces by means of polymeric layer-by-layer films. Appl Surf Sci 351:1081–1086

    Article  CAS  Google Scholar 

  90. Brown PS, Bhushan B (2015) Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique. Scientific Reports 5: Article number: 14030

    Google Scholar 

  91. Zhai L, Cebeci FC, Cohen RE, Rubner MF (2004) Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett 4:1349–1353

    Article  CAS  Google Scholar 

  92. Brown PS, Bhushan B (2015) Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil–water separation. Scientific Reports 5: Article number: 8701

    Google Scholar 

  93. Manna U, Kratochvil MJ, Lynn DM (2013) Superhydrophobic Polymer Multilayers that Promote the Extended, long-term release of embedded water-soluble agents. Adv Mater 25:6405–6409

    Article  CAS  Google Scholar 

  94. Broderick AH, Manna U, Lynn DM (2012) Covalent layer-by-layer assembly of water-permeable and water-impermeable polymer multilayers on highly water-soluble and water-sensitive substrates. Chem Mater 24:1786–1795

    Article  CAS  Google Scholar 

  95. Parbat D, Gaffar S, Rather AM, Gupta A, Manna U (2017) A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water. Chem Sci 8:6542–6554

    Article  CAS  Google Scholar 

  96. Yu X, Wang Z, Jiang Y, Shi F, Zhang X (2005) Reversible pH-responsive Surface: From Superhydrophobicity to Superhydrophilicity. Adv Mater 17:1289–1293

    Article  CAS  Google Scholar 

  97. Chen X, Gao J, Song B, Smet M, Zhang X (2010) Stimuli-responsive wettability of nonplanar substrates: pH-controlled floatation and supporting force. Langmuir 26:104–108

    Article  CAS  Google Scholar 

  98. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360

    Article  CAS  Google Scholar 

  99. Wang S, Feng X, Yao J, Jiang L (2006) Controlling wettability and photochromism in a dual-responsive tungsten oxide film. Angew Chem Int Ed 45:1264–1267

    Article  CAS  Google Scholar 

  100. Lim HS, Lee WH, Lee SG, Lee D, Jeon S, Cho K (2010) Effect of nanostructure on the surface dipole moment of photoreversibly tunable superhydrophobic surfaces. Chem Commun 46:4336–4338

    Article  CAS  Google Scholar 

  101. Feng CL, Zhang YJ, Jin J, Song YL, Xie LY, Qu GR, Jiang L, Zhu DB (2001) Reversible wettability of photoresponsive fluorine-containing azobenzene polymer in langmuir − blodgett films. Langmuir 17:4593

    Article  CAS  Google Scholar 

  102. Rosario R, Gust D, Garcia AA, Hayes M, Taraci JL, Clement T, Dailey JW, Picraux ST (2004) A lotus effect amplifies light-induced contact angle switching. J Phys Chem B 108:12640

    Article  CAS  Google Scholar 

  103. Hamed A, Shehata N, Elosairy M (2018) Investigation of conical spinneret in generating more dense and compact electrospun nanofibers. Polymers 10:12

    Article  CAS  Google Scholar 

  104. Ahmad B, Stoyanov S, Pelan E, Stride E, Edirisinghe M (2013) Electrospinning of ethyl cellulose fibres with glass and steel needle configurations. Food Res Int 54:1761–1772

    Article  CAS  Google Scholar 

  105. Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev 51:239–264

    Article  CAS  Google Scholar 

  106. Ma M, Mao Y, Gupta M, Gleason KK, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38:9742–9748

    Article  CAS  Google Scholar 

  107. Jiang L, Zhao Y, Zhai JA (2004) Lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem Int Ed 43:4338–4341

    Article  CAS  Google Scholar 

  108. Carter MCD, Lynn DM (2016) Covalently crosslinked and physically stable polymer coatings with chemically labile and dynamic surface features fabricated by treatment of azlactone-containing multilayers with alcohol-, thiol-, and hydrazine-based nucleophiles. Chem Mater 28:5063–5072

    Article  CAS  Google Scholar 

  109. Tian X, Verho T, Ras RHA (2016) Moving superhydrophobic surfaces toward real-world applications. Science 352:142–143

    Article  CAS  Google Scholar 

  110. Han JT, Jang Y, Lee DY, Park JH, Song S-H, Ban D-Y, Cho K (2005) Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. J Mater Chem 15:3089–3092

    Article  CAS  Google Scholar 

  111. Zhang L, Chen H, Sun J, Shen J (2007) Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate; facile method to prepare a superhydrophobic surface. Chem Mater 19:948–953

    Article  CAS  Google Scholar 

  112. Parbat D, Manna U (2017) Synthesis of reactive and covalent polymeric multilayers coatings with durable superoleophobicity and superoleophilicity properties under water. Chem Sci 8:6092–6102

    Article  CAS  Google Scholar 

  113. Bravo J, Zhai L, Wu Z, Cohen RE, Rubner MF (2007) Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23:7293–7298

    Article  CAS  Google Scholar 

  114. Gao L, McCarthy TJ (2006) A perfectly hydrophobic surface (θA/θR = 180°/180°). J Am Chem Soc 128:9052–9053

    Article  CAS  Google Scholar 

  115. Liu W, Chen S, Quan X, Jin YH (2008) Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry. Environ Toxicol Chem 27:1597–1604

    Article  CAS  Google Scholar 

  116. Kelly BC, Ikonomou MG, Blair JD, Surridge B, Hoover D, Grace R, Gobas FAPC (2009) Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure. Environ Sci Technol 43:4037–4043

    Article  CAS  Google Scholar 

  117. Vierke L, Staude C, Engler AB, Drost W, Schulte C (2012) Perfluorooctanoic acid (PFOA)-main concerns and regulatory developments in Europe from an environmental point of view. Environ Sci Eur 24, Article number 16

    Google Scholar 

  118. Golovin K, Boban M, Mabry JM, Tuteja A (2017) Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl Mater Interfaces 9:11212–11223

    Article  CAS  Google Scholar 

  119. Milionis A, Loth E, Bayer IS (2016) Recent advances in the mechanical durability of superhydrophobic materials. Adv Colloid Interface Sci 229:57–79

    Article  CAS  Google Scholar 

  120. Chang H, Tu K, Wang X, Liu J (2015) Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv 5:30647–30653

    Article  CAS  Google Scholar 

  121. Weng D, Xu F, Li X, Li Y, Sun J (2018) Bioinspired photothermal conversion coatings with self-healing superhydrophobicity for efficient solar steam generation. J Mater Chem A 6:24441–24451

    Article  CAS  Google Scholar 

  122. Liu Q, Wang X, Yu B, Zhou F, Xue Q (2012) Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica. Langmuir 28:5845–5849

    Article  CAS  Google Scholar 

  123. Puretskiy N, Stoychev G, Synytska A, Ionov L (2012) Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles. Langmuir 28:3679–3682

    Article  CAS  Google Scholar 

  124. Das A, Deka J, Raidongia K, Manna U (2017) Robust and self-healable bulk-superhydrophobic polymeric coating. Chem Mater 29:8720–8728

    Article  CAS  Google Scholar 

  125. Lv T, Cheng Z, Zhang D, Zhang E, Zhao Q, Liu Y, Jiang L (2016) Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage. ACS Nano 10:9379–9386

    Article  CAS  Google Scholar 

  126. Lv T, Cheng Z, Zhang E, Kang H, Liu Y, Jiang L (2017) Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry. Small 13:1503402

    Article  CAS  Google Scholar 

  127. Wang W, Salazar J, Vahabi H, Joshi-Imre A, Voit WE, Kota AK (2017) Metamorphic superomniphobic surfaces. Adv Mater 29:1700295

    Article  CAS  Google Scholar 

  128. Levkin PA, Svec F (2009) Fre’chet JMJ. Adv Funct Mater 19:1993–1998

    Article  CAS  Google Scholar 

  129. Deng X, Mammen L, Butt HJ, Vollmer D (2012) Science 335:67–70

    Article  CAS  Google Scholar 

  130. Yohe ST, Grinstaff MW (2013) A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process. Chem Commun 49:804–806

    Article  CAS  Google Scholar 

  131. Li B, Zhang J, Wu L, Wang A (2013) Durable superhydrophobic surfaces prepared by spray coating of polymerized organosilane/attapulgite nanocomposites. ChemPlusChem 78:1503–1509

    Article  CAS  Google Scholar 

  132. Bayer IS, Steele A, Martorana PJ, Loth E (2010) Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions. Appl Surf Sci 257:823–826

    Article  CAS  Google Scholar 

  133. Rather AM, Manna U (2016) Facile synthesis of tunable and durable bulk superhydrophobic material from amine “reactive” polymeric gel. Chem Mater 28:8689–8699

    Article  CAS  Google Scholar 

  134. Cho SJ, Nam H, Ryu H, Lim G (2013) A rubberlike stretchable fibrous membrane with anti-wettability and gas breathability. Adv Funct Mater 23:5577–5584

    Article  CAS  Google Scholar 

  135. Liu F, Suna F, Pan Q (2014) Highly compressible and stretchable superhydrophobic coating inspired by bio-adhesion of marine mussels. J Mater Chem A 2:11365–11371

    Article  CAS  Google Scholar 

  136. Rather AM, Manna U (2017) Stretchable and durable superhydrophobicity that acts both in air and under oil. J Mater Chem A 5:15208–15216

    Article  CAS  Google Scholar 

  137. Das A, Sengupta S, Deka J, Rather AM, Raidongia K, Manna U (2018) Synthesis of fish scale and lotus leaf mimicking, stretchable and durable multilayers. J Mater Chem A 6:15993–16002

    Article  CAS  Google Scholar 

  138. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086

    Article  CAS  Google Scholar 

  139. Crone TJ, Tolstoy M (2010) Magnitude of the 2010 gulf of mexico oil leak. Science 330:634

    Article  CAS  Google Scholar 

  140. Li J, Shi L, Chen Y, Zhang YB, Guo ZG, Su BL, Liu W (2012) Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J Mater Chem 22:9774–9781

    Article  CAS  Google Scholar 

  141. Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704

    Article  CAS  Google Scholar 

  142. Zhu Q, Pan QM, Liu FT (2011) Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C 115:17464–17470

    Article  CAS  Google Scholar 

  143. Jiang ZX, Geng L, Huang YD (2010) Design and fabrication of hydrophobic copper mesh with striking loading capacity and pressure resistance. J Phys Chem C 14:9370–9378

    Article  CAS  Google Scholar 

  144. Liu X, Ge L, Li W, Wang X, Li F (2015) Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption. ACS Appl Mater Interfaces 7:791–800

    Article  CAS  Google Scholar 

  145. Huang JY, Li SH, Ge MZ, Wang LN, Xing TL, Chen GQ, Liu XF, Al-Deyab SS, Zhang KQ, Chen T, Lai YK (2015) Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. J Mater Chem A 3:2825–2832

    Article  CAS  Google Scholar 

  146. Li J, Kang R, Tang X, She H, Yanga Y, Zha F (2016) Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale 8:7638–7645

    Article  CAS  Google Scholar 

  147. Wang J, Kaplan JA, Colson YL, Grinstaff MW (2016) Stretch-induced drug delivery from superhydrophobic polymer composites: use of crack propagation failure modes for controlling release rates. Angew Chem Int Ed 55:2796–2800

    Article  CAS  Google Scholar 

  148. Rather AM, Shome A, Bhunia BK, Panuganti A, Mandal BB, Manna U (2018) Simultaneous and controlled release of two different bioactive small molecules from nature inspired single material. J Mater Chem B 7:7692–7702

    Article  Google Scholar 

  149. Chesnokova MG, Shalaj VV, Kraus JA, Mironov AJ (2015) Assessment of soil biocorrosion severeness on the pipeline locations. Procedia Eng 113:57–61

    Article  CAS  Google Scholar 

  150. Islander RL, Devinny JS, Mansfeld F, Postyn A, Shih H (1991) Microbial ecology of crown corrosion in sewers. J Environ Eng 117:751–770

    Article  CAS  Google Scholar 

  151. Mahapatra A, Padhi N, Mahapatra D, Bhatt M, Sahoo D, Jena S, Dash D, Chayani N (2015) Study of biofilm in bacteria from water pipelines. J Clin Diagn Res 9:DC09−DC11

    Google Scholar 

  152. Bagihalli GB, Avaji PG, Patil SA, Badami PS (2008) Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur J Med Chem 43:2639–2649

    Article  CAS  Google Scholar 

  153. Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304

    Article  CAS  Google Scholar 

  154. Hassan IA, Parkin IP, Nair SP, Carmalt CJ (2014) Antimicrobial activity of copper and copper(I) oxide thin films deposited via aerosol-assisted CVD. J Mater Chem B 2:2855–2860

    Article  CAS  Google Scholar 

  155. Hwang GB, Page K, Patir A, Nair SP, Allan E, Parkin IP (2018) The anti-biofouling properties of superhydrophobic surfaces are short-lived. ACS Nano 12:6050–6058

    Article  CAS  Google Scholar 

  156. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347: Issue 6226

    Article  CAS  Google Scholar 

  157. Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019

    Article  CAS  Google Scholar 

  158. Fukagata K, Kasagi N, Koumoutsakos P (2006) A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys Fluids 18:051703

    Article  Google Scholar 

  159. Shirtcliffe NJ, McHale G, Newton MI, Zhang Y (2009) Superhydrophobic copper tubes with possible flow enhancement and drag reduction. ACS Appl Mater Interfaces 1:1316–1323

    Article  CAS  Google Scholar 

  160. Carlborg CF, Wijngaart WVD (2011) Sustained superhydrophobic friction reduction at high liquid pressures and large flows. Langmuir 27:487–493

    Article  CAS  Google Scholar 

  161. Lyu S, Nguyen DC, Kim D, Hwang W, Yoon B (2013) Experimental drag reduction study of super-hydrophobic surface with dual-scale structures. Appl Surf Sci 286:206

    Article  CAS  Google Scholar 

  162. Ming Z, Jian L, Chunxia W, Xiaokang Z, Lan C (2011) Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs). Soft Matter 7: 4391

    Article  CAS  Google Scholar 

  163. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34

    Article  CAS  Google Scholar 

  164. Blossey R (2003) Self-cleaning surfaces-virtual realities. Nat Mater 2:301–306

    Article  CAS  Google Scholar 

  165. Zhang YL, Xia H, Kim E, Sun HB (2012) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8:11217–11231

    Article  CAS  Google Scholar 

  166. Huang Z, Gurney RS, Wang T, Liu D (2018) Environmentally durable superhydrophobic surfaces with robust photocatalytic self-cleaning and self-healing properties prepared via versatile film deposition methods. J Colloid Interface Sci 527:107–116

    Article  CAS  Google Scholar 

  167. Furstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956–961

    Article  CAS  Google Scholar 

  168. Zhang Z, Wang H, Liang Y, Li X, Ren L, Cui Z, Luo C (2018) One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. Scientific Reports 8: Article number: 3869

    Google Scholar 

  169. Xue C-H, Li Y-R, Zhang P, Ma J-Z, Jia S-T (2014) Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Appl Mater Interfaces 6:10153–10161

    Article  CAS  Google Scholar 

  170. Liu Q, Chen D, Kang Z (2015) One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interfaces 7:1859–1867

    Article  CAS  Google Scholar 

  171. Xu QF, Wang JN (2009) A superhydrophobic coating on aluminium foil with an anti-corrosive property. New J Chem 33:734–738

    Article  CAS  Google Scholar 

  172. Li J, Guan P, Li M, Zhang Y, Cheng P, Ji R (2017) Anticorrosive superhydrophobic polystyrene-coated mesh for continuous oil spill clean-up. New J Chem 41:4862–4868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Manna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jana, N., Parbat, D., Manna, U. (2019). Superhydrophobic Interfaces for High-Performance/Advanced Application. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_18

Download citation

Publish with us

Policies and ethics