Skip to main content

Carbon Dioxide Enrichment and Crop Productivity

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Photorespiration (oxidative photosynthetic carbon cycle) is a process in which photosynthates burn down due to oxidative action of RUBISCO. This led to 25% reduction in photosynthetic output. However, e[CO2] can inhibit this reaction resulting to the minimum loss of carbon also known as CO2 fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed M, Stƶckle CO, Nelson R, Higgins S, Ahmad S, Raza MA (2019) Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci Rep 9:7813

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351ā€“372

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol 142:135ā€“147

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258ā€“270

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ainsworth EA, Beier C, Calfapietra C, Ceulemans R, Durand-Tardif M, Farquhar GD, Godbold DL, Hendrey GR, Hickler T, Kaduk J, Karnosky DF, Kimball BA, KƖRner C, Koornneef M, Lafarge T, Leakey ADB, Lewin KF, Long SP, Manderscheid R, McNeil DL, Mies TA, Miglietta F, Morgan JA, Nagy J, Norby RJ, Norton RM, Percy KE, Rogers A, Soussana J-F, Stitt M, Weigel H-J, White JW (2008a) Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. Plant Cell Environ 31(9):1317ā€“1324

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ainsworth EA, Leakey ADB, Ort DR, Long SP (2008b) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179(1):5ā€“9

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Anwar MR, Oā€™Leary G, McNeil D, Hossain H, Nelson R (2007) Climate change impact on rainfed wheat in South-Eastern Australia. Field Crop Res 104(1ā€“3):139ā€“147

    ArticleĀ  Google ScholarĀ 

  • Assmann SM (1999) The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ 22(6):629ā€“637

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Calvo OC, Franzaring J, Schmid I, MĆ¼ller M, Brohon N, Fangmeier A (2017) Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob Chang Biol 23(3):1292ā€“1304

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Carter T, Jones RN, Lu X, Bhadwal S, Conde C, Mearns L, Oā€™Neill B, Rounsevell M, Zurek M (2007) New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds.), Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change 2007. Cambridge University Press, Cambridge, pp. 133ā€“171

    Google ScholarĀ 

  • Cohen I, Rapaport T, Berger RT, Rachmilevitch S (2018) The effects of elevated CO2 and nitrogen nutrition on root dynamics. Plant Sci 272:294ā€“300

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38(1ā€“3):127ā€“145

    ArticleĀ  Google ScholarĀ 

  • Dong J, Gruda N, Lam SK, Li X, Duan Z (2018) Effects of elevated CO2 on nutritional quality of vegetables: a review. Front Plant Sci 9:924

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Drigo B, Kowalchuk G, van Veen J (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44(5):667ā€“679

    ArticleĀ  Google ScholarĀ 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Climate change 2007. The physical science basis. Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Guo J, Zhang M-Q, Wang X-W, Zhang W-J (2015) A possible mechanism of mineral responses to elevated atmospheric CO2 in rice grains. J Integr Agric 14(1):50ā€“57

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Habermann E, Dias de Oliveira EA, Contin DR, San Martin JAB, Curtarelli L, Gonzalez-Meler MA, Martinez CA (2019) Stomatal development and conductance of a tropical forage legume are regulated by elevated [CO2] under moderate warming. Front Plant Sci 10

    Google ScholarĀ 

  • Hoogenboom G, Tsuji GY, Pickering NB, Curry RB, Jones JW, Singh U, Godwin DC (1995) Decision support system to study climate change impacts on crop production. In: Rosenzweig C (ed) Climate change and agriculture: analysis of potential international impacts. American Society of Agronomy, Madison, pp 51ā€“75

    Google ScholarĀ 

  • IPCC (2007) Climate change (2007) synthesis report. Summary for policymakers

    Google ScholarĀ 

  • Jena UR, Swain DK, Hazra KK, Maiti MK (2018) Effect of elevated [CO2] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in eastern India. J Sci Food Agric 98:5841

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Krishnapriya V, Pandey R (2016) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67(10):1096ā€“1109

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859ā€“2876

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55(1):591ā€“628

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Long SP, Ainsworth EA, Leakey ADB, Nƶsberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918ā€“1921

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mollah M, Norton R, Huzzey J (2009) Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop Pasture Sci 60(8):697ā€“707

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nguyen LM, Buttner MP, Cruz P, Smith SD, Robleto EA (2011) Effects of elevated atmospheric CO2 on rhizosphere soil microbial communities in a mojave desert ecosystem. J Arid Environ 75(10):917ā€“925

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nie M, Pendall E (2016) Do rhizosphere priming effects enhance plant nitrogen uptake under elevated CO2? Agric Ecosyst Environ 224:50ā€“55

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107(45):19368ā€“19373

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nƶsberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (2006) Managed ecosystems and CO2: case studies, processes, and perspectives. Springer, Berlin/New York

    BookĀ  Google ScholarĀ 

  • Oā€™Leary GJ, Christy B, Nuttall J, Huth N, Cammarano D, Stƶckle C, Basso B, Shcherbak I, Fitzgerald G, Luo Q, Farre-Codina I, Palta J, Asseng S (2015) Response of wheat growth, grain yield and water use to elevated CO2 under a free-air CO2 enrichment (FACE) experiment and modelling in a semi-arid environment. Glob Chang Biol 21(7):2670ā€“2687

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001) Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol 150(2):251ā€“260

    ArticleĀ  Google ScholarĀ 

  • Pandey R, Lal MK, Vengavasi K (2018) Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus. Plant Cell Rep 37(9):1231ā€“1244

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under sres emissions and socio-economic scenarios. Glob Environ Chang 14(1):53ā€“67

    ArticleĀ  Google ScholarĀ 

  • Phillips DA, Fox TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Chang Biol 12(3):561ā€“567

    ArticleĀ  Google ScholarĀ 

  • Rogers A, Gibon Y, Stitt M, Morgan PB, Bernacchi CJ, Ort DR, Long SP (2006) Increased c availability at elevated carbon dioxide concentration improves n assimilation in a legume. Plant Cell Environ 29(8):1651ā€“1658

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rosenzweig C (1985) Potential CO2-induced climate effects on north american wheat-producing regions. Clim Chang 7(4):367ā€“389

    ArticleĀ  Google ScholarĀ 

  • Rosenzweig C, Tubiello F (2007) Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig Adapt Strateg Glob Chang 12(5):855ā€“873

    ArticleĀ  Google ScholarĀ 

  • Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model intercomparison and improvement project (agmip): protocols and pilot studies. Agric For Meteorol 170:166ā€“182

    ArticleĀ  Google ScholarĀ 

  • Ruane AC, Major DC, Yu WH, Alam M, Hussain SG, Khan AS, Hassan A, Hossain BMTA, Goldberg R, Horton RM, Rosenzweig C (2013) Multi-factor impact analysis of agricultural production in Bangladesh with climate change. Glob Environ Chang 23(1):338ā€“350

    ArticleĀ  Google ScholarĀ 

  • Smith MR, Myers SS (2018) Impact of anthropogenic CO2 emissions on global human nutrition. Nat Clim Chang 8(9):834ā€“839

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sulieman S, Thao N, Tran LSP (2015) Does elevated CO2 provide real benefits for n2-fixing leguminous symbioses? In: Sulieman S, Tran LSP (eds) Legume nitrogen fixation in a changing environment. Springer, Cham, pp 89ā€“112

    Google ScholarĀ 

  • Sun P, Mantri N, Lou H, Hu Y, Sun D, Zhu Y, Dong T, Lu H (2012) Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (fragaria Ɨ ananassa duch.) at two levels of nitrogen application. PLoS One 7(7):e41000

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tausz M, Tausz-Posch S, Norton RM, Fitzgerald GJ, Nicolas ME, Seneweera S (2013) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ Exp Bot 88:71ā€“80

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tfaily MM, Hess NJ, Koyama A, Evans RD (2018) Elevated [CO2] changes soil organic matter composition and substrate diversity in an arid ecosystem. Geoderma 330:1ā€“8

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tubiello FN, Ewert F (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron 18(1ā€“2):57ā€“74

    ArticleĀ  Google ScholarĀ 

  • Tubiello FN, Amthor JS, Boote KJ, Donatelli M, Easterling W, Fischer G, Gifford RM, Howden M, Reilly J, Rosenzweig C (2007) Crop response to elevated CO2 and world food supply: A comment on ā€œfood for thoughā€ by Long et al., Science 312:1918ā€“1921, 2006. Eur J Agron 26(3):215ā€“223

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Webber AN, Nie G-Y, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39(3):413ā€“425

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xiong J, He Z, Shi S, Kent A, Deng Y, Wu L, Van Nostrand JD, Zhou J (2015) Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci Rep 5:9316

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M (2019) Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19:255

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Ziska LH (2008) Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. DNA Cell Biol 27(4):165ā€“172

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, M., Ahmad, S. (2019). Carbon Dioxide Enrichment and Crop Productivity. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_3

Download citation

Publish with us

Policies and ethics