Skip to main content

Gene-Environment Interactions and Role of Epigenetics in Anxiety Disorders

  • Chapter
  • First Online:
Anxiety Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1191))

Abstract

Several environmental risk factors such as early adverse childhood experiences, stress, and stressful life events are associated with anxiety disorders. Current approaches such as epigenetics and gene-environment interactions were used to identify candidate biomarkers for anxiety disorders to assess determinants of disease. In this chapter, in relation to gene-environment interactions, a variety of association studies regarding anxiety disorders were surveyed. We then showed supporting results from recent association studies such as human studies and animal models in terms of the epigenetic contribution to disease susceptibility to anxiety disorders. At last, future directions and limitations are highlighted. With the advances in multi-omics technologies, innovative ideas regarding disease prevention and drug responsiveness in anxiety disorders require further research in epigenetics and gene-environment interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett AA, Singh R, Hunter RG. Anxiety and epigenetics. Adv Exp Med Biol. 2017;978:145–66.

    Article  CAS  PubMed  Google Scholar 

  2. Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;21(10):1391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav. 2018;17(3):e12423.

    Article  CAS  PubMed  Google Scholar 

  4. Faravelli C, Lo Sauro C, Lelli L, Pietrini F, Lazzeretti L, Godini L, et al. The role of life events and HPA axis in anxiety disorders: a review. Curr Pharm Des. 2012;18(35):5663–74.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma S, Powers A, Bradley B, Ressler KJ. Gene × environment determinants of stress- and anxiety-related disorders. Annu Rev Psychol. 2016;67:239–61.

    Article  PubMed  Google Scholar 

  6. Gibb BE, McGeary JE, Beevers CG, Miller IW. Serotonin transporter (5-HTTLPR) genotype, childhood abuse, and suicide attempts in adult psychiatric inpatients. Suicide Life Threat Behav. 2006;36(6):687–93.

    Article  PubMed  Google Scholar 

  7. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301(5631):386–9.

    Article  CAS  PubMed  Google Scholar 

  8. Stein MB, Schork NJ, Gelernter J. Gene-by-environment (serotonin transporter and childhood maltreatment) interaction for anxiety sensitivity, an intermediate phenotype for anxiety disorders. Neuropsychopharmacology. 2008;33(2):312–9.

    Article  CAS  PubMed  Google Scholar 

  9. Klauke B, Deckert J, Reif A, Pauli P, Zwanzger P, Baumann C, et al. Serotonin transporter gene and childhood trauma – a G × E effect on anxiety sensitivity. Depress Anxiety. 2011;28(12):1048–57.

    Article  CAS  PubMed  Google Scholar 

  10. Lin E, Hong CJ, Hwang JP, Liou YJ, Yang CH, Cheng D, et al. Gene-gene interactions of the brain-derived neurotrophic-factor and neurotrophic tyrosine kinase receptor 2 genes in geriatric depression. Rejuvenation Res. 2009;12(6):387–93.

    Article  CAS  PubMed  Google Scholar 

  11. Kaufman J, Yang BZ, Douglas-Palumberi H, Grasso D, Lipschitz D, Houshyar S, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry. 2006;59(8):673–80.

    Article  CAS  PubMed  Google Scholar 

  12. Min JA, Lee HJ, Lee SH, Park YM, Kang SG, Chae JH. Gender-specific effects of brain-derived neurotrophic factor Val66Met polymorphism and childhood maltreatment on anxiety. Neuropsychobiology. 2013;67(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  13. Martin L, Hemmings SMJ, Kidd M, Seedat S. No gene-by-environment interaction of BDNF Val66Met polymorphism and childhood maltreatment on anxiety sensitivity in a mixed race adolescent sample. Eur J Psychotraumatol. 2018;9(1):1472987.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lazary J, Eszlari N, Juhasz G, Bagdy G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur Neuropsychopharmacol. 2016;26(6):1020–8.

    Article  CAS  PubMed  Google Scholar 

  15. Maglione JE, Nievergelt CM, Parimi N, Evans DS, Ancoli-Israel S, Stone KL, et al. Associations of PER3 and RORA circadian gene polymorphisms and depressive symptoms in older adults. Am J Geriatr Psychiatry. 2015;23(10):1075–87.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Min JA, Lee HJ, Lee SH, Park YM, Kang SG, Park YG, et al. RORA polymorphism interacts with childhood maltreatment in determining anxiety sensitivity by sex: a preliminary study in healthy young adults. Clin Psychopharmacol Neurosci. 2017;15(4):402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pena CJ, Bagot RC, Labonte B, Nestler EJ. Epigenetic signaling in psychiatric disorders. J Mol Biol. 2014;426(20):3389–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  19. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  20. Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:334–40.

    Article  CAS  Google Scholar 

  21. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81.

    Article  CAS  PubMed  Google Scholar 

  22. Lutz PE, Turecki G. DNA methylation and childhood maltreatment: from animal models to human studies. Neuroscience. 2014;264:142–56.

    Article  CAS  PubMed  Google Scholar 

  23. Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci. 2004;5(7):545–52.

    Article  CAS  PubMed  Google Scholar 

  24. Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology. 2006;147(6):2909–15.

    Article  CAS  PubMed  Google Scholar 

  25. Kinnally EL, Capitanio JP, Leibel R, Deng L, LeDuc C, Haghighi F, et al. Epigenetic regulation of serotonin transporter expression and behavior in infant rhesus macaques. Genes Brain Behav. 2010;9(6):575–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12(12):1559–66.

    Article  CAS  PubMed  Google Scholar 

  27. Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011;69(2):359–72.

    Article  CAS  PubMed  Google Scholar 

  28. Weaver IC, D’Alessio AC, Brown SE, Hellstrom IC, Dymov S, Sharma S, et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci. 2007;27(7):1756–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang TY, Hellstrom IC, Bagot RC, Wen X, Diorio J, Meaney MJ. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci. 2010;30(39):13130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314(5796):140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roth TL, Lubin FD, Funk AJ, Sweatt JD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry. 2009;65(9):760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blaze J, Asok A, Roth TL. Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC. Stress. 2015;18(6):607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doherty TS, Forster A, Roth TL. Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment. Behav Brain Res. 2016;298(Pt A):55–61.

    Article  CAS  PubMed  Google Scholar 

  34. Chagnon YC, Potvin O, Hudon C, Preville M. DNA methylation and single nucleotide variants in the brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) genes are associated with anxiety/depression in older women. Front Genet. 2015;6:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tyrka AR, Parade SH, Welch ES, Ridout KK, Price LH, Marsit C, et al. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders. Transl Psychiatry. 2016;6(7):e848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang W, Feng J, Ji C, Mu X, Ma Q, Fan Y, et al. Increased methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of patients with generalized anxiety disorder. J Psychiatr Res. 2017;91:18–25.

    Article  PubMed  Google Scholar 

  37. Ciuculete DM, Bostrom AE, Tuunainen AK, Sohrabi F, Kular L, Jagodic M, et al. Changes in methylation within the STK32B promoter are associated with an increased risk for generalized anxiety disorder in adolescents. J Psychiatr Res. 2018;102:44–51.

    Article  PubMed  Google Scholar 

  38. Emeny RT, Baumert J, Zannas AS, Kunze S, Wahl S, Iurato S, et al. Anxiety associated increased CpG methylation in the promoter of Asb1: a translational approach evidenced by epidemiological and clinical studies and a murine model. Neuropsychopharmacology. 2018;43(2):342–53.

    Article  CAS  PubMed  Google Scholar 

  39. Malan-Muller S, Hemmings SM, Seedat S. Big effects of small RNAs: a review of microRNAs in anxiety. Mol Neurobiol. 2013;47(2):726–39.

    Article  PubMed  CAS  Google Scholar 

  40. Aten S, Page CE, Kalidindi A, Wheaton K, Niraula A, Godbout JP, et al. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior. Neuropharmacology. 2019;144:256–70.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen JL, Jackson NL, Ballestas ME, Webb WM, Lubin FD, Clinton SM. Amygdalar expression of the microRNA miR-101a and its target Ezh2 contribute to rodent anxiety-like behaviour. Eur J Neurosci. 2017;46(7):2241–52.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mannironi C, Biundo A, Rajendran S, De Vito F, Saba L, Caioli S, et al. miR-135a regulates synaptic transmission and anxiety-like behavior in amygdala. Mol Neurobiol. 2018;55(4):3301–15.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu J, Chen Z, Tian J, Meng Z, Ju M, Wu G, et al. miR-34b attenuates trauma-induced anxiety-like behavior by targeting CRHR1. Int J Mol Med. 2017;40(1):90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meydan C, Shenhar-Tsarfaty S, Soreq H. MicroRNA regulators of anxiety and metabolic disorders. Trends Mol Med. 2016;22(9):798–812.

    Article  CAS  PubMed  Google Scholar 

  45. Moonat S, Sakharkar AJ, Zhang H, Tang L, Pandey SC. Aberrant histone deacetylase2-mediated histone modifications and synaptic plasticity in the amygdala predisposes to anxiety and alcoholism. Biol Psychiatry. 2013;73(8):763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tran L, Schulkin J, Ligon CO, Greenwood-Van Meerveld B. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry. 2015;20(10):1219–31.

    Article  CAS  PubMed  Google Scholar 

  47. Lin E, Lane HY. Genome-wide association studies in pharmacogenomics of antidepressants. Pharmacogenomics. 2015;16(5):555–66.

    Article  CAS  PubMed  Google Scholar 

  48. Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet. 2007;80(6):1125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin E, Lane HY. Machine learning and systems genomics approaches for multi-omics data. Biomark Res. 2017;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25.

    Article  CAS  PubMed  Google Scholar 

  51. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.

    Article  CAS  PubMed  Google Scholar 

  52. Hodkinson BP, Grice EA. Next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv Wound Care (New Rochelle). 2015;4(1):50–8.

    Article  Google Scholar 

  53. Lin E, Kuo PH, Liu YL, Yu YW, Yang AC, Tsai SJ. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psych. 2018;9:290.

    Article  Google Scholar 

  54. Lin E, Lin CH, Lai YL, Huang CH, Huang YJ, Lane HY. Combination of G72 genetic variation and G72 protein level to detect schizophrenia: machine learning approaches. Front Psych. 2018;9:566.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Ministry of Science and Technology of Taiwan (grant MOST 107-2634-F-075-002) and from the Taipei Veterans General Hospital (grant V105D17-002-MY2-2). We thank Emily Ting for English editing.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, E., Tsai, SJ. (2020). Gene-Environment Interactions and Role of Epigenetics in Anxiety Disorders. In: Kim, YK. (eds) Anxiety Disorders. Advances in Experimental Medicine and Biology, vol 1191. Springer, Singapore. https://doi.org/10.1007/978-981-32-9705-0_6

Download citation

Publish with us

Policies and ethics