Skip to main content

Theoretical and Computational Investigations of Carbon Nanostructures

  • Chapter
  • First Online:
Carbon Nanomaterial Electronics: Devices and Applications

Abstract

Carbon is one of the most versatile elements in the periodic table and is known to occur in various allotropic forms. It has been widely explored since the eighteenth century and its investigation in various forms has witnessed continuous growth thereafter. The effect of these advancements has guided numerous discoveries which have not only addressed several aspects of materials physics, but also their applications. The development of theoretical and computational tools accompanied by novel characterization techniques along with the ability to synthesize these reduced dimensionalities of the carbon family like fullerene, carbon nanotubes, graphene, carbon quantum dots, etc. has significantly improved the understanding of these nanostructures. The ability of computational and theoretical techniques to predict and provide insights into the structure and properties of systems plays a crucial part in substantiating experimental findings. Theoretical and computational modeling of various carbon nanostructures such as fullerene, carbon nanotubes, graphene, and carbon quantum dots will be critically reviewed. The chapter begins with the description of the historical timeline of carbon nanostructures. How the models developed over time have led to the development of carbon nanoforms is reviewed. The impact of theoretical and computational approaches in understanding the physics of these carbon nanostructures is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Y, Yin Q-Z (2012) Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proc Natl Acad Sci USA 109:19579–19583

    Article  Google Scholar 

  2. Allègre CJ, Poirier J-P, Humler E et al (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526

    Article  Google Scholar 

  3. Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98:805–808

    Article  Google Scholar 

  4. Marty B, Alexander CMO, Raymond SN (2013) Primordial origins of Earth’s carbon. Rev Mineral Geochem 75:149–181

    Article  Google Scholar 

  5. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868–871

    Article  Google Scholar 

  6. Titirici M-M, White RJ, Brun N et al (2015) Sustainable carbon materials. Chem Soc Rev 44:250–290

    Article  Google Scholar 

  7. Loos M (2015) Allotropes of carbon and carbon nanotubes. Elsevier, Amsterdam, The Netherlands

    Book  Google Scholar 

  8. Deng J, You Y, Sahajwalla V et al (2016) Transforming waste into carbon-based nanomaterials. Carbon 96:105–115

    Article  Google Scholar 

  9. Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175

    Article  Google Scholar 

  10. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  11. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  12. Novoselov KS, Fal VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  13. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  14. Zhu Y, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  Google Scholar 

  15. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  Google Scholar 

  16. Bonaccorso F, Colombo L, Yu G et al (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501–1246509

    Article  Google Scholar 

  17. Sun M-J, Cao X, Cao Z (2016) Si(C≡C)4-based single-crystalline semiconductor: diamond-like superlight and super flexible wide-bandgap material for the UV photoconductive device. ACS Appl Mater Interfaces 8:16551–16554

    Article  Google Scholar 

  18. Chen Y, Fu K, Zhu S et al (2016) Reduced graphene oxide films with ultrahigh conductivity as Li-Ion battery current collectors. Nano Lett 16:3616–3623

    Article  Google Scholar 

  19. Georgakilas V, Tiwari JN, Kemp KC et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Article  Google Scholar 

  20. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257

    Article  Google Scholar 

  21. Khadiran T, Hussein MZ, Zainal Z et al (2015) Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material. Energy 82:468–478

    Article  Google Scholar 

  22. Wu Y, Lin Y, Bol AA et al (2011) High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472:74–78

    Article  Google Scholar 

  23. Deng J, Li M, Wang Y (2016) Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem 18:4824–4854

    Article  Google Scholar 

  24. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  Google Scholar 

  25. Wei L, Kuo PK, Thomas RL et al (1993) Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 70:3764–3767

    Article  Google Scholar 

  26. Titirici M (2013) Sustainable carbon materials from hydrothermal processes. Wiley, Chichester, UK

    Google Scholar 

  27. Dai L, Chang DW, Baek J-B et al (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166

    Article  Google Scholar 

  28. Kaneko K, Ishii C, Ruike M et al (1992) Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 30:1075–1088

    Article  Google Scholar 

  29. Pang J, Bachmatiuk A, Ibrahim I et al (2016) CVD growth of 1D and 2D sp2 carbon nanomaterials. J Mater Sci 51:640–667

    Article  Google Scholar 

  30. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  31. Smalley RE (1991) Great balls of carbon: the Story of Buckminsterfullerene. The Sci 31:22–28

    Google Scholar 

  32. Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B 323:1–5

    Article  Google Scholar 

  33. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  34. Jones DEH (1966) Hollow molecules. New Sci 32:245

    Google Scholar 

  35. Osawa E (1970) Superaromaticity. Kagaku (Kyoto) 25:854–863

    Google Scholar 

  36. Bochvar DA, Galperin EG (1973) Hypothetical systems-carbododecahedron, s-icosahedrone and carbo-s-icosahedron. Proc Acad Sci USSR 209:610–612

    Google Scholar 

  37. Iijima S (1980) High resolution electron microscopy of some carbonaceous materials. J Microscopy 119:99–111

    Article  Google Scholar 

  38. Curl RF, Smalley RE (1991) Fullerenes. Sci Am 265:54–63

    Article  Google Scholar 

  39. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  40. Bethune DS, Kiang CH, DeVries MS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  Google Scholar 

  41. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  42. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  Google Scholar 

  43. Pickard CJ, Needs RJ (2011) Ab initio random structure searching. J Phys Condens Matter 23:053201–053223

    Article  Google Scholar 

  44. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704–244715

    Article  Google Scholar 

  45. Oganov AR, Valle M (2009) How to quantify energy landscapes of solids. J Chem Phys 130:104504–104509

    Article  Google Scholar 

  46. Hautier G, Fischer C, Ehrlacher V et al (2011) Data mined ionic substitutions for the discovery of new compounds. Inorg Chem 50:656–663

    Article  Google Scholar 

  47. Curtarolo S, Morgan D, Persson K et al (2003) Predicting crystal structures with data mining of quantum calculations. Phys Rev Lett 91:135503–135506

    Article  Google Scholar 

  48. Fischer CC, Tibbetts KJ, Morgan D et al (2006) Predicting crystal structure by merging data mining with quantum mechanics. Nat Mater 5:641–646

    Article  Google Scholar 

  49. Hautier G, Fischer CC, Jain A et al (2010) Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem Mater 22:3762–3767

    Article  Google Scholar 

  50. Meredig B, Agrawal A, Kirklin S et al (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89:094104–094110

    Article  Google Scholar 

  51. Bergerhoff G, Hundt R, Sievers R et al (1983) The inorganic crystal structure data base. J Chem Inf Comput Sci 23:66–69

    Article  Google Scholar 

  52. Meredig B, Wolverton C (2013) A hybrid computational–experimental approach for automated crystal structure solution. Nat Mater 12:123–127

    Google Scholar 

  53. Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592–12595

    Article  Google Scholar 

  54. Zhang BL, Wang CZ, Ho KM et al (1993) The geometry of large fullerene cages: C72 to C102. J Chem Phys 98:3095–3102

    Article  Google Scholar 

  55. Tang AC, Huang FQ (1995) Electronic structures of giant fullerenes with Ih symmetry. Phys Rev B 51:13830–13832

    Article  Google Scholar 

  56. Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4907

    Article  Google Scholar 

  57. Dewar MJS, Zoebisch EG, Healy EF et al (1985) J Am Chem Soc 107:3902–3909

    Article  Google Scholar 

  58. Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method J Comput Chem 10:209–220

    Article  Google Scholar 

  59. Dewar MJS, Jie C, Yu J (1993) SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron 49:5003–5038

    Article  Google Scholar 

  60. Davidson RA (1981) Spectral analysis of graphs by cyclic automorphism subgroups. Theor Chim Acta 58:193–231

    Article  Google Scholar 

  61. Schultz HP (1965) Topological organic chemistry. Polyhedranes and Prismanes. J Org Chem 30:1361–1364

    Article  Google Scholar 

  62. Krätschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  63. Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81:3322–3330

    Article  Google Scholar 

  64. Raghavachari K, Binkley JS (1987) Structure, stability, and fragmentation of small carbon clusters. J Chem Phys 87:2191–2197

    Article  Google Scholar 

  65. Parasuk V, Almolf J (1989) The electronic and molecular structure of C6: complete active space self-consistent-field and multireference configuration interaction. J Chem Phys 91:1137–1141

    Article  Google Scholar 

  66. Pitzer KS, Clementi E (1959) Large molecules in carbon vapor. J Am Chem Soc 81:4477–4485

    Article  Google Scholar 

  67. Hoffmann R (1966) Extended hückel theory—v: Cumulenes, polyenes, polyacetylenes and cn. Tetrahedron 22:521–538

    Article  Google Scholar 

  68. Raghavachari K, Strout DL, Odom GK et al (1993) Isomers of C20. Dramatic effect of gradient corrections in density functional theory. Chem Phys Lett 214:357–361

    Article  Google Scholar 

  69. Schmalz TG, Seitz WA, Klein DJ et al (1988) Elemental carbon cages. J Am Chem Soc 110:1113–1127

    Article  Google Scholar 

  70. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  Google Scholar 

  71. Taylor R, Hare JP, Abdul-sada AK et al (1990) Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J Am Chem Soc Comm 20:1423–1425

    Article  Google Scholar 

  72. Ettl R, Chao I, Diederich F et al (1991) Isolation of C76, a chiral (D2) allotrope of carbon. Nature 353:149–153

    Article  Google Scholar 

  73. Yan Q-L, Gozin M, Zhao F-Q et al (2016) Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8:4799–4851

    Article  Google Scholar 

  74. Kikuchi K, Nakahara N, Wakabayashi T et al (1992) NMR characterization of isomers of C78, C82 and C84 fullerenes. Nature 357:142–145

    Article  Google Scholar 

  75. Manolopoulos DE, Fowler PW, Taylor R et al (1992) Faraday communications. An end to the search for the ground state of C84? J Chem Soc Faraday Trans 88:3117–3118

    Article  Google Scholar 

  76. Kadish KM, Ruoff RS (eds) (2002) Fullerene: chemistry physics and technology. Wiley, New York

    Google Scholar 

  77. Manolopoulos DE, Fowler PW (1992) Molecular graphs, point groups, and fullerenes. J Chem Phys 96:7603–7614

    Article  Google Scholar 

  78. Shustova NB, Kuvychko IV, Bolskar RD et al (2006) Trifluoromethyl Derivatives of Insoluble Small-HOMO−LUMO-Gap Hollow Higher Fullerenes. NMR and DFT Structure Elucidation of C2-(C74–D3h)(CF3)12, Cs-(C76-Td(2))(CF3)12, C2-(C78–D3h(5))(CF3)12, Cs-(C80–C2v(5))(CF3)12, and C2-(C82–C2(5))(CF3)12. J Am Chem Soc 128:15793–15798

    Article  Google Scholar 

  79. Shustova NB, Newell BS, Miller SM et al (2007) Discovering and verifying elusive fullerene cage isomers: structures of C2–p11-(C74–D3h)(CF3)12 and C2–p11-(C78–D3h(5))(CF3)12. Angew Chem 46:4111–4114

    Article  Google Scholar 

  80. Amsharov KY, Jensen M (2008) A C78 fullerene precursor: toward the direct synthesis of higher fullerenes. J Org Chem 73:2931–2934

    Article  Google Scholar 

  81. Manolopoulos DE, Fowler PW (1991) Structural proposals for endohedral metal—fullerene complexes. Chem Phys Lett 187:1–7

    Article  Google Scholar 

  82. Shao N, Gao Y, Yoo S et al (2006) Search for lowest-energy fullerenes: C98 to C110. J Phys Chem A 110:7672–7676

    Article  Google Scholar 

  83. Shao N, Gao Y, Zeng XC (2007) Search for lowest-energy fullerenes 2: C38 to C80 and C112 to C120. J Phys Chem C 111:17671–17677

    Article  Google Scholar 

  84. Slanina Z, Uhlik F, Yoshida M et al (2000) A computational treatment of 35 IPR isomers of C88. Fullerene Sci Technol 8:417–432

    Article  Google Scholar 

  85. Slanina Z, Zhao X, Deota P et al (2000) Relative stabilities of C92 IPR fullerenes. J Mol Model 6:312–317

    Article  Google Scholar 

  86. Sun G (2003) Assigning the major isomers of fullerene C88 by theoretical 13C NMR spectra. Chem Phys Lett 367:26–33

    Article  Google Scholar 

  87. Sun G, Kertesz M (2002) 13C NMR spectra for IPR isomers of fullerene C86. Chem Phys 276:107–114

    Article  Google Scholar 

  88. Zhao X, Slanina Z, Goto H (2004) Theoretical studies on the relative stabilities of C96 IPR fullerenes. J Phys Chem A 108:4479–4484

    Article  Google Scholar 

  89. Zhao X, Goto H, Slanina Z (2004) C100 IPR fullerenes: temperature-dependent relative stabilities based on the Gibbs function. Chem Phys 306:93–104

    Article  Google Scholar 

  90. Fowler PW, Steer JI (1987) The leapfrog principle: a rule for electron counts of carbon clusters. J Chem Soc Chem Commun 9:1403–1405

    Article  Google Scholar 

  91. Amic D, Trinajstic N (1990) On the lack of reactivity of Buckminsterfullerene. A theoretical study. J Chem Soc Perkin Trans 2:1595–1598

    Article  Google Scholar 

  92. Coulombeau C, Rassat A (1987) Calculs de propriétés électroniques et des fréquences normales de vibration d’agrégats carbonés formant des polyèdres réguliers et semi-réguliers. J Chim Phys 84:875–882

    Article  Google Scholar 

  93. Ozaki M, Takahashi A (1986) On electronic states and bond lengths of the truncated icosahedral C60 molecule. Chem Phys Lett 127:242–244

    Article  Google Scholar 

  94. Liithi HP, Almlof J (1987) AB initio studies on the thermodynamic stability of the icosahedral C60 molecule “buckminsterfullerene.” Chem Phys Lett 135:357–360

    Article  Google Scholar 

  95. Almlof J, Luthi HP (1987) Theoretical methods and results for electronic structure calculations on very large systems. ACS Symp. Ser. 353: (Supercomut. Res. Chem. Chem. Eng.), 35–48

    Google Scholar 

  96. Almlof J (1990) Carbon in the Galaxy. In: Tarter JC, Chang S, DeFrees DJ (eds) National Aeronautics and Space Administration Conference Publication Washington, DC, 1990, vol 3061. NASA, USA, p 245

    Google Scholar 

  97. Schulman JM, Disch RL (1991) The heat of formation of buckminsterfullerene, C60. J Chem Soc Chem Comm 6:411–412

    Article  Google Scholar 

  98. Larsson S, Volosov A (1987) Rosen A (1987) Optical spectrum of the icosahedral C60- “follene-60.” Chem Phys Lett 137:501–504

    Article  Google Scholar 

  99. Braga M, Larsson S, Rosen A et al (1991) Electronic transition in C60—on the origin of the strong interstellar absorption at 217 NM. Astron Astrophys 245:232–238

    Google Scholar 

  100. Kataoka M, Nakajima T (1986) Geometrical structures and spectra of corannulene and icosahedral C60. Tetrahedron 42:6437–6442

    Article  Google Scholar 

  101. Lazlo I, Udvardi L (1987) On the geometrical structure and UV spectrum of the truncated icosahedral C60, molecule. Chem Phys Lett 136:418–422

    Google Scholar 

  102. Hayden GW, Mele EJ (1987) π bonding in the icosahedral C60 cluster. Phys Rev B 36:5010–5015

    Article  Google Scholar 

  103. Newton MD, Stanton RE (1986) Stability of buckminsterfullerene and related carbon clusters. J Am Chem Soc 108:2469–2470

    Article  Google Scholar 

  104. Elser V, Haddon RC (1987) Icosahedral C60: an aromatic molecule with a vanishingly small ring current magnetic susceptibility. Nature 325:792–794

    Article  Google Scholar 

  105. Elser V, Haddon RC (1987) Magnetic behavior of icosahedral Csub60. Phys Rev A 36:4579–4584

    Article  Google Scholar 

  106. Fowler PW, Lazzeretti P, Zanasi R (1990) Electric and magnetic properties of the aromatic sixty-carbon cage. Chem Phys Lett 165:79–86

    Article  Google Scholar 

  107. Haddon RC, Elser V (1990) Icosahedral C60 revisited: an aromatic molecule with a vanishingly small ring current magnetic susceptibility. Chem Phys Lett 169:362–364

    Article  Google Scholar 

  108. Schmalz TG (1990) The magnetic susceptibility of Buckminsterfullerene. Chem Phys Lett 175:3–5

    Article  Google Scholar 

  109. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier, San Diego

    Google Scholar 

  110. Lebedeva MA, Chamberlain TW, Khlobystov AN (2015) Harnessing the synergistic and complementary properties of fullerene and transition-metal compounds for nanomaterial applications. Chem Rev. 115:11301–11351

    Article  Google Scholar 

  111. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  Google Scholar 

  112. Zhu S, Song Y, Zhao X et al (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Article  Google Scholar 

  113. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 49:6726–6744

    Article  Google Scholar 

  114. Sun Y-P, Zhou B, Lin Y et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  Google Scholar 

  115. Yamijala SSRKC, Bandyopadhyay A, Pati SK (2014) Electronic properties of zigzag, armchair and their hybrid quantum dots of graphene and boron-nitride with and without substitution: A DFT study. Chem Phys Lett 603:28–32

    Article  Google Scholar 

  116. Saidi WA (2013) Oxygen reduction electrocatalysis using N-Doped graphene quantum-dots. J Phys Chem Lett 4:4160–4165

    Article  Google Scholar 

  117. Kumar GS, Roy R, Sen D et al (2014) Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale 6:3384–3391

    Article  Google Scholar 

  118. Zhao M, Yang F, Xue Y et al (2014) A time-dependent DFT study of the absorption and fluorescence properties of graphene quantum dots. Chem Phys Chem 15:950–957

    Article  Google Scholar 

  119. Sk MA, Ananthanarayanan A, Huang L et al (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2:6954–6960

    Article  Google Scholar 

  120. Zarenia M, Chaves A, Farias GA et al (2011) Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach. Phys Rev B 84:245403–245414

    Article  Google Scholar 

  121. Li H, He X, Kang Z et al (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  Google Scholar 

  122. Choudhary RP, Shukla S, Vaibhav K et al (2015) Optical properties of few layered graphene quantum dots. Mater Res Express 2:095024–095028

    Article  Google Scholar 

  123. Zhang RQ, Bertran E, Lee S-T (1998) Size dependence of energy gaps in small carbon clusters: the origin of broadband luminescence. Diamond Relat Mater 7:1663–1668

    Article  Google Scholar 

  124. Zhu B, Sun S, Wang Y et al (2013) Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mater Chem C 1:580–586

    Article  Google Scholar 

  125. Park Y, Yoo J, Lim B et al (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A 4:11582–11603

    Article  Google Scholar 

  126. Hu S, Tian R, Wu L et al (2013) Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity. Chem Asian J 8: 1035–1041

    Google Scholar 

  127. Kwon W, Do S, Kim J-H et al (2015) Control of Photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Sci Rep 5:12604–12613

    Google Scholar 

  128. Margraf JT, Strauss V, Guldi DM et al (2015) The electronic structure of amorphous carbon nanodots. J Phys Chem B 119:7258–7265

    Article  Google Scholar 

  129. Ajayan PM, Stephan O, Colliex C et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265:1212–1214

    Article  Google Scholar 

  130. Saito Y, Hamaguchi K, Hata K et al (1997) Conical beams from open nanotubes. Nature 389:554–555

    Article  Google Scholar 

  131. de Heer WA, Châtelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180

    Article  Google Scholar 

  132. Collins PG, Zettl A, Bando H et al (1997) Nanotube nanodevice. Science 278:100–102

    Article  Google Scholar 

  133. Nardelli MB, Yakobson BI, Bernholc J (1998) Mechanism of strain release in carbon nanotubes. Phys Rev B 57:R4277-4280

    Article  Google Scholar 

  134. Huang JY, Chen S, Ren ZF et al (2006) Real-time observation of tubule formation from amorphous carbon nanowires under high-bias joule heating. Nano Lett 6:1699–1705

    Article  Google Scholar 

  135. Radushkevich LV, Lukyanovich VM (1952) The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst. Russian J Phys Chem 26:88–95

    Google Scholar 

  136. Saxena S, Tyson TA (2010) Ab initio density functional studies of the restructuring of graphene nanoribbons to form tailored single walled carbon nanotubes. Carbon 48:1153–1158

    Google Scholar 

  137. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Press, London, Imp. Coll

    Book  MATH  Google Scholar 

  138. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Ann Rev Mater Res 33:419–501

    Article  Google Scholar 

  139. Zhang M, Li J (2009) Carbon nanotube in different shapes. Mater Today 12:12–18

    Article  Google Scholar 

  140. Elliott JA, Sandler JKW, Windle AH et al (2004) Collapse of single-wall carbon nanotubes is diameter dependent. Phys Rev Lett 92:095501–095504

    Article  Google Scholar 

  141. Ebbesen TW, Lezec HJ, Hiura H et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  Google Scholar 

  142. Saito R, Fujita M, Dresselhaus G et al (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  Google Scholar 

  143. Delaney P, Di Ventra M, Pantelides ST (1999) Quantized conductance of multiwalled carbon nanotubes. Appl Phys Lett 75:3787–3789

    Article  Google Scholar 

  144. Yu MF, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  Google Scholar 

  145. Yu MF, Files BS, Arepalli S et al (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555

    Article  Google Scholar 

  146. Xie S, Li W, Pan Z et al (2000) Mechanical and physical properties on carbon nanotube. J Phys Chem Solids 61:1153–1158

    Article  Google Scholar 

  147. Overney G, Zhong W, Tomanek D (1993) Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D 27:93–96

    Article  Google Scholar 

  148. Tersoff J (1992) Energies of fullerenes. Phys Rev B 46:15546–15549

    Article  Google Scholar 

  149. Sinnott SB, Shenderova OA, White CT et al (1998) Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon 36:1–9

    Article  Google Scholar 

  150. Yakobson BI (1998) Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl Phys Lett 72:918–920

    Article  Google Scholar 

  151. Ru CQ (2000) Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J Appl Phys 87:7227–7231

    Article  Google Scholar 

  152. Saxena S, Tyson TA (2010) Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon. ACS Nano 4:3515–3521

    Article  Google Scholar 

  153. Gao G, Çagin T, Goddard WA III (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9:184–191

    Article  Google Scholar 

  154. Hernandez E, Goze C, Bernier P et al (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502–4505

    Article  Google Scholar 

  155. Yu M-F, Kowalewski T, Ruoff RS (2000) Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys. Rev. Lett. 85:1456–1459

    Article  Google Scholar 

  156. Saeed K, Khan I (2013) Carbon nanotubes–properties and applications: a review. Carbon Lett 14:131–144

    Article  Google Scholar 

  157. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930

    Article  Google Scholar 

  158. Ashcroft NW (1976) Mermin N D (1976) Solid State Physics. Harcourt Brace, Orlando, FL

    Google Scholar 

  159. Kim P, Shi L, Majumdar A et al (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502–215505

    Article  Google Scholar 

  160. Yu C, Shi L, Yao Z et al (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 5:1842–1846

    Article  Google Scholar 

  161. Maultzsch J, Reich S, Thomsen C et al (2002) Phonon dispersion of carbon nanotubes. Solid State Commun 121:471–474

    Article  Google Scholar 

  162. Ishii H, Kobayashi N, Hirose K (2007) Electron–phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Phys E 40:249–252

    Article  Google Scholar 

  163. Maeda T, Horie C (1999) Phonon modes in single-wall nanotubes with a small diameter. Phys B 263–264:479–481

    Article  Google Scholar 

  164. Kasuya A, Saito Y, Sasaki Y et al (1996) Size dependent characteristics of single wall carbon nanotubes. Mater Sci Eng A 217–218:46–47

    Article  Google Scholar 

  165. Popov VN (2004) Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems. Carbon 42:991–995

    Article  Google Scholar 

  166. Segal M (2012) Material history: learning from silicon. Nature 483:S43–S44

    Article  Google Scholar 

  167. Falcao EHL, Wudl F (2007) Carbon allotropes: beyond graphite and diamond. J Chem Technol Biotechnol 82:524–531

    Article  Google Scholar 

  168. Aristov VY, Urbanik G, Kummer K et al (2010) Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices. Nano Lett 10:992–995

    Article  Google Scholar 

  169. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  Google Scholar 

  170. Paredes JI, Villar-Rodil S, Fernández-Merino MJ et al (2011) Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J Mater Chem 21:298–306

    Article  Google Scholar 

  171. Dikin DA, Stankovich S, Zimney EJ et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  Google Scholar 

  172. Wang G, Yang J, Park J et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  Google Scholar 

  173. Prasai D, Tuberquia JC, Harl RR et al (2012) Graphene: corrosion-inhibiting coating. ACS Nano 6:1102–1108

    Article  Google Scholar 

  174. Kiran SK, Shukla S, Struck A et al (2019) Surface enhanced 3D rGO hybrids and porous rGO nano-networks as high performance supercapacitor electrodes for integrated energy storage devices. Carbon 158:527–535

    Article  Google Scholar 

  175. Kiran SK, Shukla S, Struck A et al (2019) Surface engineering of graphene oxide shells using Lamellar LDH nanostructures. ACS Appl Mater Interfaces 11:20232–20240

    Article  Google Scholar 

  176. Zhao X, Hayner CM, Kung MC et al (2011) In‐plane vacancy‐enabled high‐power Si–graphene composite electrode for Lithium‐Ion batteries. Adv Energy Mater 1:1079–1084

    Google Scholar 

  177. Z. Radivojevic, et al. (2012) Electrotactile touch surface by using transparent graphene. In: VRIC ‘12: proceedings of the 2012 virtual reality international conference, association for computing machinery, New York, NY, USA

    Google Scholar 

  178. Wang H, Sun K, Tao F et al (2013) 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew Chem Int Ed Engl 52:9210–9214

    Article  Google Scholar 

  179. Pawar PB, Saxena S, Bhade DK et al (2016) 3D oxidized graphene frameworks for efficient nano sieving. Sci Rep 6:21150–21154

    Article  Google Scholar 

  180. Shejale KP, Yadav D, Patil H et al (2020) Evaluation of techniques for the remediation of antibiotic-contaminated water using activated carbon. Mol Syst Des Eng 5:743–756

    Article  Google Scholar 

  181. Pandey A, Deb M, Tiwari S et al (2018) 3D oxidized graphene frameworks: an efficient adsorbent for methylene blue. J Mater 70:469–472

    Google Scholar 

  182. Pawar PB, Maurya SK, Chaudhary RP et al (2016) Water purification using graphene covered micro-porous, reusable carbon membrane. MRS Adv 1:1411–1416

    Article  Google Scholar 

  183. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634

    Article  MATH  Google Scholar 

  184. Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev B 94:1498–1524

    Article  MATH  Google Scholar 

  185. Harrison (1980) Electronic structure and the properties of solids: the physics of the chemical bond. W. H, Freeman and Company, San Francisco, p 1980

    Google Scholar 

  186. Boehm HP, Clauss A, Fisher GO et al (1962) Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien. Zeitschrift Fur Anorg Und Allg Chemie 316:119–127

    Article  Google Scholar 

  187. Fuhrer MS, Lau CN, MacDonald AH (2010) Graphene: materially better carbon. MRS Bull 35:289–295

    Article  Google Scholar 

  188. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  189. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  190. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  191. Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  192. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roondhe, B., Sharma, V., Saxena, S. (2021). Theoretical and Computational Investigations of Carbon Nanostructures. In: Hazra, A., Goswami, R. (eds) Carbon Nanomaterial Electronics: Devices and Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1052-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1052-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1051-6

  • Online ISBN: 978-981-16-1052-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics