Skip to main content

Synthesis of Carbon Allotropes in Nanoscale Regime

  • Chapter
  • First Online:

Part of the book series: Advances in Sustainability Science and Technology ((ASST))

Abstract

Since the last 30 years, incredible amount of research has been performed toward finding novel, smart, and cost-effective materials for device applications. Carbon among other materials is one of the most versatile elements present in nature that can produce different allotropes due to the existence of its variable hybridizations. Moreover, graphene is being considered as the mother of other carbon allotropes as they are the structurally derived allotropes of different dimensionalities such as fullerene, graphene quantum dots (0-D), carbon nanotubes, nanohorns, nanofibers, graphene nanoribbon (1-D), graphene (2-D), graphite and diamond (3-D) and are being implemented for various device applications. The synthesis methodologies of these allotropes including arc discharge, laser ablation, and chemical vapor deposition (CVD) techniques are discussed in this chapter to produce 0-D, 1-D, and 2-D carbon allotropes. CVD is considered as the most reliable technique for bulk production of highly crystalline graphene and its derivatives, single-crystalline diamonds, CNTs, and aligned CNTs on certain pre-treated substrates which are beneficial for device applications. Further, solid-state synthesis approaches such as ball milling and annealing have been adopted to generate CNTs, while graphene and offshoots have been synthesized by employing wet milling, top-down, and bottom-up processes. Also, it is noteworthy to mention that the bottom-up processes have been proven to be more effective compared to the top-down approaches for device fabrications. Furthermore, allotropes of carbon are known to be functionalized with metal-based nanoparticles, biomolecules, etc. to generate smart materials in order to obtain high-performance devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tiwari SK, Kumar V, Huczko A et al (2016) Magical allotropes of carbon: prospects and applications, critical reviews in solid state and materials sciences. Crit Rev Solid State Mater Sci 41:257–317

    Article  Google Scholar 

  2. Kroto H, Heath J, O’Brien S et al (1985) C60: buckminsterfullerene. Nature 318:162–163

    Google Scholar 

  3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  5. Speranza G (2019) The role of functionalization in the applications of carbon materials: an overview. C. https://doi.org/10.3390/c5040084

  6. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  Google Scholar 

  7. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  8. Haddon RC (1997) C60: sphere or polyhedron? J Am Chem Soc 119:1797–1798

    Article  Google Scholar 

  9. Diederich F, Ettl R, Rubin Y, Whetten RL, Beck R, Alvarez M et al (1991) The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h–C70. Science 252:548–451

    Article  Google Scholar 

  10. Krueger A (2010) Carbon materials and nanotechnology. Wiley-VCH, Weinheim, pp 33–122

    Google Scholar 

  11. Yulong Y, Xinsheng P (2016) Recent advances in carbon-based dots for electroanalysis. Analyst 141:2619–2628

    Article  Google Scholar 

  12. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222

    Article  Google Scholar 

  13. Li D, Jing PT, Sun LH, An Y, Shan XY et al (2018) Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mater. https://doi.org/10.1002/adma.201705913

    Article  Google Scholar 

  14. Li H, He X, Kang Z, Liu Y (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  Google Scholar 

  15. Campuzano S, Sedeño PY, Pingarrón JM (2019) Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials. https://doi.org/10.3390/nano9040634

    Article  Google Scholar 

  16. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442

    Article  Google Scholar 

  17. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  Google Scholar 

  18. Kim S, Hwang SW, Kim MK et al (2012) Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6(9):8203–8208

    Article  Google Scholar 

  19. Peng J, Gao W, Gupta BK et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  Google Scholar 

  20. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Mater Today Chem 10:221–258

    Article  Google Scholar 

  21. Zhu S, Song Y, Wang J, Wan H, Zhang Y, Ning Y, Yang B (2017) Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state. Nano Today 13:10–14

    Article  Google Scholar 

  22. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. https://doi.org/10.1002/smll.201602225

    Article  Google Scholar 

  23. Zhang D, Wen L, Huang R, Wang H, Hu X, Xing D (2018) Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials 153:14–26

    Article  Google Scholar 

  24. Sahub C, Tuntulani T, Nhujak T, Tomapatanaget B (2018) Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sens Actuators B Chem 258:88–97

    Article  Google Scholar 

  25. Ijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  Google Scholar 

  26. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  Google Scholar 

  27. Chernozatonskii L (2003) Three-terminal junctions of carbon nanotubes: synthesis structures, properties and applications. J Nanopart Res 5:473–484

    Article  Google Scholar 

  28. Satishkumar BC, Thomas PJ, Govindaraj A, Rao CNR (2000) Y-junction carbon nanotubes. Appl Phys Lett Doi 10(1063/1):1319185

    Google Scholar 

  29. de Heer WA, Bacsa WS, Châtelain A, Gerfin T, Baker RH, Forro L, Ugarte D (1995) Aligned carbon nanotube films: production and optical and electronic properties. Science 268(5212):845–847

    Article  Google Scholar 

  30. Ouyang M, Huang JL, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025

    Article  Google Scholar 

  31. Ouyang M, Huang JL, Lieber CM (2002) Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annu Rev Phys Chem 53:201–220

    Article  Google Scholar 

  32. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A-Gen 253(2):337–358

    Article  Google Scholar 

  33. Vamvakaki V, Tsagaraki K, Chaniotakis N (2006) Carbon nanofiber-based glucose biosensor. Anal Chem 78(15):5538–5542

    Article  Google Scholar 

  34. Kim SU, Lee KH (2004) Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chem Phys Lett 400:253–257

    Article  Google Scholar 

  35. Huang J, Liu Y, You T (2009) Carbon nanofiber based electrochemical biosensors: a review. Anal Methods. https://doi.org/10.1039/b9ay00312f

  36. Karousis N, Martinez IS, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116:4850–4883

    Article  Google Scholar 

  37. Ajima K, Yudasaka M, Murakami T, Maigne´ A, Shiba K, Iijima S (2005) Carbon nanohorns as anticancer drug carriers. Mol Pharm 2(6):475–480

    Google Scholar 

  38. Shenderova OA, Lawson BL, Areshkin D, Brenner DW (2001) Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones. Nanotechnology 12:191–197

    Article  Google Scholar 

  39. Zhang S, Yao Z, Zhao S, Zhang E (2006) buckling and competition of energy and entropy lead conformation of single-walled carbon Nanocones. Appl Phys Lett . https://doi.org/10.1063/1.2358109

  40. Urita K, Seki S, Utsumi S, Noguchi D, Kanoh H, Tanaka H, Hattori Y, Ochiai Y, Aoki N, Yudasaka M et al (2006) Effects of gas adsorption on the electrical conductivity of single-wall carbon nanohorns. Nano Lett 6:1325–1328

    Article  Google Scholar 

  41. Murata K, Kaneko K, Kokai F, Takahashi K, Yudasaka M, Iijima S (2000) Pore structure of single-wall carbon nanohorn aggregates. Chem Phys Lett 331:14–20

    Article  Google Scholar 

  42. Ohba T, Omori T, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2005) Interstitial nanopore change of single wall carbon nanohorn assemblies with high temperature treatment. Chem Phys Lett 389:332–336

    Article  Google Scholar 

  43. Bekyarova E, Hanzawa Y, Kaneko K, Albero JS et al (2002) Cluster-mediated filling of water vapor in intratube and interstitial nanospaces of single-wall carbon nanohorns. Chem Phys Lett 366:463–468

    Article  Google Scholar 

  44. Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, Kahoh H, Kaneko K (2003) Single-wall nanostructured carbon for methane storage. J Phys Chem B 107:4681–4684

    Article  Google Scholar 

  45. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54:17954–17961

    Article  Google Scholar 

  46. Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.97.216803

    Article  Google Scholar 

  47. Shen H, Shi Y, Wang X (2015) Synthesis, charge transport and device applications of graphene nanoribbons. Synth Met. https://doi.org/10.1016/j.synthmet.2015.07.010

    Article  Google Scholar 

  48. Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349

    Article  Google Scholar 

  49. Duttaa S, Pati SK (2010) Novel properties of graphene nanoribbons: a review. J Mater Chem 20:8207–8223

    Article  Google Scholar 

  50. Guimarães MHD, Shevtsov O, Waintal X, van Wees BJ (2012) From quantum confinement to quantum Hall effect in graphene nanostructures. Phys Rev B. https://doi.org/10.1103/PhysRevB.85.075424

    Article  Google Scholar 

  51. Baringhaus J, Ruan M, Edler F (2014) Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506(7488):349–354

    Article  Google Scholar 

  52. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232

    Article  Google Scholar 

  53. Daniela E, Nemnes GA, Ioan U (2014) Spintronic devices based on graphene nanoribbons with transition metal impurities. Towards Space Appl INCAS BULLETIN 6(1):45–56

    Google Scholar 

  54. Chen J, Jang C, Xiao S et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech 3:206–209

    Article  Google Scholar 

  55. Bonaccorso F, Colombo L, Yu G (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. https://doi.org/10.1126/science.1246501

    Article  Google Scholar 

  56. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  57. Williams JR, DiCarlo L, Marcus CM (2007) Quantum hall effect in a gate-controlled p-n junction of graphene. Science 317(5838):638–641

    Article  Google Scholar 

  58. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379

    Article  Google Scholar 

  59. Areshkin DA, Gunlycke D, White CT (2007) Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett 7(1):204–210

    Article  Google Scholar 

  60. Zeng Z, Tang K et al (2013) Tunable band gap in few-layer graphene by surface adsorption. Sci Rep. https://doi.org/10.1038/srep01794

    Article  Google Scholar 

  61. Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    Article  Google Scholar 

  62. Yin LJ, Bai KK, Wang WX, Li SY, Zhang Y, He L (2017) Landau quantization of dirac fermions in graphene and its multilayers. Front Phys. https://doi.org/10.1007/s11467-017-0655-0

    Article  Google Scholar 

  63. Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Direct imaging of lattice atoms and popological defects in graphene membranes. Nano Lett 8(11):3582–3586

    Article  Google Scholar 

  64. Liu L, Qing M, Wang Y, Chen S (2015) Defects in graphene: generation, healing, and their effects on the properties of graphene: a review. J Mater Sci Technol 31(6):599–606

    Article  Google Scholar 

  65. Krasheninnikov AV, Lehtinen PO, Foster AS, Nieminen RM (2006) Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem Phys Lett 418(1–3):312–136

    Google Scholar 

  66. Liang Z, Xu Z, Yan T, Ding F (2013) Atomistic simulation and the mechanism of graphene amorphization under electron irradiation. Nanoscale 6:2082–2086

    Article  Google Scholar 

  67. Malola S, Häkkinen H, Koskinen P (2010) Structural, chemical, and dynamical trends in graphene grain boundaries. Phys Rev B. https://doi.org/10.1103/PhysRevB.81.1

    Article  Google Scholar 

  68. Ö. Girit C, Meyer JC, Erni R, et al (2009) Graphene at the edge: stability and dynamics. Science 323(5922):1705–170865447

    Article  Google Scholar 

  69. Tian W, Li W, Yu W, Liu X (2017) A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines. https://doi.org/10.3390/mi8050163

    Article  Google Scholar 

  70. Biel B, Blase X, Triozon F, Roche S (2009) Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.102.096803

    Article  Google Scholar 

  71. Chien SK, Yang YT, Chen CK (2011) Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations. Appl Phys Lett . https://doi.org/10.1063/1.3543622

  72. Hao F, Fang D, Xu Z (2011) Mechanical and thermal transport properties of graphene with defects. Appl Phys Lett. https://doi.org/10.1063/1.3615290

  73. Kim EA, Neto AHC (2008) Graphene as an electronic membrane. EPL. https://doi.org/10.1209/0295-5075/84/57007

    Article  Google Scholar 

  74. Deng S, Berry V (2016) Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19(4):197–212

    Article  Google Scholar 

  75. Xu K, Cao P, Heath JR (2009) Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett 9(12):4446–4451

    Article  Google Scholar 

  76. Cranford SW, Buehler MJ (2011) Packing efficiency and accessible surface area of crumpled graphene. Phys Rev B. https://doi.org/10.1103/PhysRevB.84.205451

    Article  Google Scholar 

  77. Jung S, Rutter GM, Klimov NN et al (2011) Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat Phys 7:245–251

    Article  Google Scholar 

  78. de Parga ALV, Calleja F, Borca B, Passeggi MCG Jr, Hinarejos JJ, Guinea F, Miranda R (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.100.056807

    Article  Google Scholar 

  79. Schneider M, Brouwer PW (2014) Quantum corrections to transport in graphene: a trajectory-based semiclassical analysis. New J Phys. https://doi.org/10.1088/1367-2630/16/7/073015

    Article  Google Scholar 

  80. Liu N, Pan Z, Fu L, Zhang C, Dai B, Liu Z (2011) The origin of wrinkles on transferred graphene. Nano Res. https://doi.org/10.1007/s12274-011-0156-3

    Article  Google Scholar 

  81. Calado VE, Schneider GF, Theulings AMMG, Dekker C, Vandersypen LMK (2012) Formation and control of wrinkles in graphene by the wedging transfer method. Appl Phys Lett. https://doi.org/10.1063/1.4751982

  82. Chung DDL (2002) Review graphite. J Mater 37(8):1475–1489

    Google Scholar 

  83. Klett J, Hardy R, Romine E, Walls C, Burchell T (2000) High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon 38:953–973

    Article  Google Scholar 

  84. Lin W, Yuan J, Sundén B (2011) Review on graphite foam as thermal material for heat exchangers. Paper presented at the World Renewable Energy Congress, Sweden, 8–13 May 2011

    Google Scholar 

  85. Klett JW, Mcmillan AD, Gallego NC, Walls CA (2004) The role of structure on the thermal properties of graphite foams. J Mater 39:3659–3676

    Article  Google Scholar 

  86. Chernyavets AN (2008) Production of high-quality graphite crucibles for metallurgy. Solid Fuel Chem 42(2):98–102

    Article  Google Scholar 

  87. Deprez N, McLachlan DS (1988) The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction. J Phys D Appl Phys 21(1):101–107

    Article  Google Scholar 

  88. Champion FC (1963) Electronic properties of diamond. Butterworths, London

    Google Scholar 

  89. Bull C, Garlick GFJ (1950) The luminescence of diamonds. Proc Phys Soc A 63(11):1283–1291

    Article  Google Scholar 

  90. Wort CJH, Balmer RS (2008) Diamond as an electronic material. Mater Today 11(1–2):22–28

    Article  Google Scholar 

  91. El-Hajj H, Denisenko A, Kaiser A, Balmer RS, Kohn E (2008) Diamond MISFET based on boron delta-doped channel. Diam Relat Mater 17(7–10):1259–1263

    Article  Google Scholar 

  92. Field JE (1979) The properties of diamond. Academic Press, New York

    Google Scholar 

  93. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    Article  Google Scholar 

  94. Nafisi S, Maibach HI (2017) Nanotechnology in cosmetics. Cosmetic Sci Technol. https://doi.org/10.1016/B978-0-12-802005-0.00022-7

    Article  Google Scholar 

  95. Moriguchi H, Ohara H, Tsujioka M (2016) History and applications of diamond-like carbon manufacturing processes. Sci Tech Rev 82:52–58

    Google Scholar 

  96. Ito H, Yamamoto K (2017) Mechanical and tribological properties of DLC films for sliding parts. Kobelco Technol Rev 35:55–60

    Google Scholar 

  97. Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83(1):72–84

    Article  Google Scholar 

  98. Takehara H, Fujiwara M, Arikawa M, Diener MD, Alford JM (2005) Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 43(2):311–319

    Article  Google Scholar 

  99. Hepp H, Siegmann K, Sattler K (1995) Multiphoton ionization mass spectroscopy of fullerenes in methane diffusion flames. Proc Mater Res Soc Symp 359:517–522

    Article  Google Scholar 

  100. Howard JB, McKinnon JT, Johnson ME, Makarovsky Y, Lafleur AL (1992) Production of C60 and C70 fullerenes in benzene-oxygen flames. J Phys Chem 96(16):6657–6662

    Article  Google Scholar 

  101. Terranova ML, Sessa V, Rossi M (2006) The world of carbon nanotubes: an overview of CVD growth methodologies. Chem. Vap. Deposition 12:315–325

    Article  Google Scholar 

  102. Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945

    Article  Google Scholar 

  103. Zahid MU, Pervaiz E, Hussain A, Shahzad MI, Niazi MBK (2018) Synthesis of carbon nanomaterials from different pyrolysis techniques: a review. Mater Res Express. https://doi.org/10.1088/2053-1591/aac05b

    Article  Google Scholar 

  104. Chen Z, Zhang W, Palma CA, Rizzini AL et al (2016) Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J Am Chem Soc 138(47):15488–15496

    Article  Google Scholar 

  105. Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T (2014) Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical- polymerized chemical vapor deposition. Adv Mater. https://doi.org/10.1002/adma.201305034

    Article  Google Scholar 

  106. May PW (2000) Diamond thin films: a 21st-century material. Philos Trans R Soc a 358(1766):473–495

    Article  Google Scholar 

  107. Matsumoto S, Sato Y, Tsutsumi M, Setaka N (1982) Growth of diamond particles from methane-hydrogen gas. J Mater Sci 17:3106–3112

    Article  Google Scholar 

  108. Matsumoto S, Sato Y, Kamo M, Setaka N (1982) Vapor deposition of diamond particles from methane. Jpn J Appl Phys 21(Part 2, no 4):183–185

    Google Scholar 

  109. Xu M, Li Z, Zhu X, Hu N, Wei H, Yang Z, Zhang Y (2013) Hydrothermal/solvothermal synthesis of graphene quantum dots and their biological applications. Nano Biomed Eng 5(2):65–71

    Article  Google Scholar 

  110. Sangam S, Gupta A, Shakeel A, Bhattacharya R, Sharma AK, Suhag D, Chakrabarti S et al (2018) Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond. Green Chem. https://doi.org/10.1039/C8GC01638K

    Article  Google Scholar 

  111. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. https://doi.org/10.1002/adma.200902825

    Article  Google Scholar 

  112. Tian R, Zhong S, Wu J, Jiang W, Shen Y, Jiang W, Wang T (2016) Solvothermal method to prepare graphene quantum dots by hydrogen peroxide. Opt Mater 60:204–208

    Article  Google Scholar 

  113. Grewal AS, Kumar K, Redhu S, Bhardwaj S (2013) Microwave assisted synthesis: a green chemistry approach. Int Res J Pharm App Sci 3(5):278–285

    Google Scholar 

  114. Nguyen HY, Le XH, Dao NT et al (2019) Microwave-assisted synthesis of graphene quantum dots and nitrogen-doped graphene quantum dots: Raman characterization and their optical properties. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6254/ab1b73

    Article  Google Scholar 

  115. Cala BF, Soriano ML, Sciortino A et al (2018) One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly via a novel microwave-assisted method: impact on triazine removal and efficiency monitoring. RSC Adv. https://doi.org/10.1039/c8ra04286a

    Article  Google Scholar 

  116. Li LL, Ji J, Fei R et al (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. https://doi.org/10.1002/adfm.201200166

    Article  Google Scholar 

  117. Mishra N, Boeckl J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: a review. Phys Status Solidi a. https://doi.org/10.1002/pssa.201600091

    Article  Google Scholar 

  118. Yang W, Chen G, Shi Z et al (2013) Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater 12(9):792–797

    Article  Google Scholar 

  119. Teeter JD, Costa PS, Pour MM (2017) Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111). ChemComm 53(60):8463–8466

    Google Scholar 

  120. Vo TH, Shekhirev M, Kunkel DA (2013) Large-scale solution synthesis of narrow graphene nanoribbons. Nat Commun. https://doi.org/10.1038/ncomms4189

    Article  Google Scholar 

  121. Zhang F, Hou PX, Liu C, Cheng HM (2016) Epitaxial growth of single-wall carbon nanotubes. Carbon 102:181–197

    Article  Google Scholar 

  122. Lin X, Zhao W, Zhou W et al (2017) Epitaxial growth of aligned and continuous carbon nanofibers from carbon nanotubes. ACS Nano 11:1257–1263

    Article  Google Scholar 

  123. Xu H, Zeigera BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    Article  Google Scholar 

  124. Ling C, Setzler G, Lin MW et al (2011) Electrical transport properties of graphene nanoribbons produced from sonicating graphite in solution. Nanotechnology. https://doi.org/10.1088/0957-4484/22/32/325201

    Article  Google Scholar 

  125. Nair RV, Thomas RT, Sankar V et al (2017) Rapid, acid-free synthesis of high-quality graphene quantum dots for aggregation induced sensing of metal ions and bioimaging. ACS Omega 2:8051–8061

    Article  Google Scholar 

  126. Jeong SH, Ko JH, Park JB, Park W (2004) A sonochemical route to single-walled carbon nanotubes under ambient conditions. J Am Chem Soc 126(49):15982–15983

    Article  Google Scholar 

  127. Galimov ÉM, Kudin AM, Skorobogatskii VN et al (2004) Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl Phys 49:150–153

    Article  Google Scholar 

  128. Ciesielski A, Samorı P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev. https://doi.org/10.1039/c3cs60217f

    Article  Google Scholar 

  129. Sarkar S, Gandla D, Venkatesh Y et al (2016) Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Phys Chem Chem Phys. https://doi.org/10.1039/C6CP01528J

    Article  Google Scholar 

  130. Guldi DM, Luo C, Swartz A et al (2002) Molecular engineering of C60-based conjugated oligomer ensembles: modulating the competition between photoinduced energy and electron transfer processes. J Org Chem 67(4):1141–1152

    Article  Google Scholar 

  131. Nierengarten JF (2004) Chemical modification of C60 for materials science applications. New J Chem 28:1177–1191

    Article  Google Scholar 

  132. Campidelli S, Deschenaux R, Eckert JF, Guillon D, Nierengarten JF (2002) Liquid-crystalline fullerene-oligophenylenevinylene conjugates. Chem Commun (Camb) 6:656–657

    Article  Google Scholar 

  133. Rispens MT, Sánchez L, Beckers EHA et al (2003) Supramolecular fullerene architectures by quadruple hydrogen bonding. Synth Met 135–136:801–803

    Article  Google Scholar 

  134. Zhaoa J, Huang X, Jin P, Chen Z (2015) Magnetic properties of atomic clusters and endohedral metallofullerenes. Coord Chem Rev 289–290:315–340

    Article  Google Scholar 

  135. Penkova AV, Acquah SFA, Piotrovskiy LB (2017) Fullerene derivatives as nano-additives in polymer composites. Russ Chem Rev 86(6):530–566

    Article  Google Scholar 

  136. Kausar A (2016) Advances in polymer/fullerene nanocomposite: a review on essential features and applications. Polym Plast Technol Eng 56(6):594–605

    Article  Google Scholar 

  137. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791

    Article  Google Scholar 

  138. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater. https://doi.org/10.1002/adfm.200500211

    Article  Google Scholar 

  139. Li G, Shrotriya V, Huang J (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  Google Scholar 

  140. Li F, Li Y, Ge Z, Zhu D, Song Y, Fang G (2000) Synthesis and optical limiting properties of polycarbonates containing fullerene derivative. J Phys Chem Sol 61:1101–1103

    Article  Google Scholar 

  141. Qian Z, Ma J, Shan X et al (2013) Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv 3:14571–14579

    Article  Google Scholar 

  142. Xiaoyan Z, Zhangyi L, Zaijun L (2017) Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg2+. Spectrochim Acta A 171:415–424

    Article  Google Scholar 

  143. Lakshmanakumar M, Nesakumar N, Sethuraman S (2019) Functionalized graphene quantum dot interfaced electrochemical detection of cardiac troponin I: an antibody free approach. Sci Rep. https://doi.org/10.1038/s41598-019-53979-5

    Article  Google Scholar 

  144. Dinari M, Momeni MM, Goudarzirad M (2016) Dye- sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots. J Mater Sci 51:2964–2971

    Article  Google Scholar 

  145. Liu W, Yan X, Chen J, Feng Y, Xue Q (2013) Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5:6053–6062

    Article  Google Scholar 

  146. Gavgani JN, Hasani A, Nouri M, Mahyari M, Salehi A (2016) Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens Actuat B Chem 229:239–248

    Article  Google Scholar 

  147. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  148. Jeon SS, Kim C, Ko J, Im SS (2011) Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J Mater Chem 21:8146–8151

    Article  Google Scholar 

  149. Zhou X, Ma P, Wang A, Yu C, Qian T, Wu S, Shen J (2015) Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens. Bioelectron 64:404–410

    Article  Google Scholar 

  150. Woo CH, Holcombe TW, Unruh DA, Sellinger A, Frechet JM (2010) Phenyl Vs alkyl polythiophene: a solar cell comparison using a vinazene derivative as acceptor. J Chem Mater 22:1673–1679

    Article  Google Scholar 

  151. Puniredd SR, Kiersnowski A, Battagliarin G, Zajaczkowski W, Wong WWH, Kirby N, Mullen K, Pisula W (2013) Polythiophene–perylene diimide heterojunction field-effect transistors. J Mater Chem C 1:2433–2440

    Article  Google Scholar 

  152. Das S, Samanta S, Chatterjee DP, Nandi AK (2013) Thermosensitive water-soluble poly (ethylene glycol)-based polythiophene graft copolymers. J Polym Sci Part A: Polym Chem 51:1417–1427

    Article  Google Scholar 

  153. Routh P, Das S, Shit A, Bairi P, Das P, Nandi AK (2013) Graphene quantum dots from a facile sono-fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application. ACS Appl Mater Interf 5:12672–12680

    Article  Google Scholar 

  154. Zhou Y, Qu ZB, Zeng Y, Zhou T, Shi G (2014) A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron 52:317–323

    Article  Google Scholar 

  155. Yang HB, Dong YQ, Wang X, Khoo SY, Liu B (2014) Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells. ACS Appl Mater Interf 6:1092–1099

    Article  Google Scholar 

  156. Jeon IY, Chang DW, Kumar NA, Baek JB (2011) Functionalization of carbon nanotubes. Carbon Nanotubes—Polymer Nanocompos. https://doi.org/10.5772/18396

    Article  Google Scholar 

  157. Hecht DS, Ramirez RJA, Briman M, Artukovic E, Chichak KS, Stoddart JF, Gruner G (2006) Bioinspired detection of light using a porphyrin-sensitized singlewall nanotube field effect transistor. Nano Lett 6:2031–2036

    Article  Google Scholar 

  158. Hu L, Zhao Y-L, Ryu K, Zhou C, Stoddart JF, Gruner G (2008) Light-induced charge transfer in pyrene/CdSe-SWNT hybrids. Adv Mater 20:939–946

    Article  Google Scholar 

  159. Kymakis E, Servati P, Tzanetakis P et al (2007) Effective mobility and photocurrent in carbon nanotube polymer composite photovoltaic cells. Nanotechnology. https://doi.org/10.1088/0957-4484/18/43/435702

    Article  Google Scholar 

  160. Bergeret C, Cousseau J, Nunzi JM, Habak DH (2011) Improving the current density JSC of organic solar cells P3HT:PCBM by structuring the photoactive layer with functionalized SWCNTs. Sol Energy Mater Sol Cells 95:53–56

    Article  Google Scholar 

  161. Jin SH, Park SH, Jeon S, Hong SH, Jun GH (2012) Highly dispersed carbon nanotubes in organic media for polymer: fullerene photovoltaic devices. Carbon 50:40–46

    Article  Google Scholar 

  162. Raïssi M, Vignau L, Cloutet E, Ratier B (2015) Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells. Org Electron 21:86–91

    Article  Google Scholar 

  163. Reddy MLP, Divya V (2013) Visible-light excited red emitting luminescent nanocomposites derived from Eu3+-phenathrene-based fluorinated b-diketonate complexes and multi-walled carbon nanotubes. J Mater Chem C 1:160–170

    Article  Google Scholar 

  164. Fanchini G, Eda G, Chhowalla M, Parekh BB (2007) Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl Phys Lett 10(1063/1):2715027

    Google Scholar 

  165. Kim KK, Geng HZ (2007) Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc 129:7758–7759

    Article  Google Scholar 

  166. Ros TG, van Dillen AJ, Geus JW, Koningsberger DC (2002) Surface oxidation of carbon nanofibers. Chem Eur J. https://doi.org/10.1023/A:1024744131630

    Article  Google Scholar 

  167. Hea P, Dai L (2004) Aligned carbon nanotube-DNA electrochemical sensors. Chem Commun. https://doi.org/10.1039/B313030B

    Article  Google Scholar 

  168. Baker SE, Tse KY, Hindin E, Nichols BM, Clare TL, Hamers RJ (2005) Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers. Chem Mater 17(20):4971–4978

    Article  Google Scholar 

  169. Zhou JH, Sui ZJ, Zhu J et al (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD. XPS and FT-IR. Carbon 45(4):785–796

    Article  Google Scholar 

  170. Lim S, Yoon SH, Mochida I (2004) Surface modification of carbon nanofiber with high degree of graphitization. J Phys Chem B 108(5):1533–1536

    Article  Google Scholar 

  171. Klein AV, TE Melechko McKnight, Retterer ST, Rack PD et al (2008) Surface characterization and functionalization of carbon nanofibers. J Appl Phys 10(1063/1):2840049

    Google Scholar 

  172. Poveda RL, Gupta N (2016) Electrical properties of CNF/Polymer composites. In: Carbon nanofiber reinforced polymer composites. Springer briefs in materials. Springer, Cham, p 71

    Google Scholar 

  173. Lee SH (2011) Mechanical and electrical properties of nonwoven coated with CNFs/PVDF-HFP composite. J Korean Soc Cloth Text 13:279–284

    Google Scholar 

  174. Lee SH (2012) Physical properties of silk fabrics coated by carbon nanofibers/poly(vinylidenefluoride-hexafloropropylene) composites. J Textile Sci Eng 49:119–125

    Article  Google Scholar 

  175. Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2007) Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J Am Chem Soc 129:20–21

    Article  Google Scholar 

  176. Yang C-M, Kim Y-J, Miyawaki J, Kim YA, Yudasaka M, Iijima S, Kaneko K (2015) Effect of the size and position of ion-accessible nanoholes on the specific capacitance of single-walled carbon nanohorns for supercapacitor applications. J Phys Chem C 119:2935–2940

    Article  Google Scholar 

  177. Comisso N, Berlouis LEA, Morrow J, Pagura C (2010) Changes in hydrogen storage properties of carbon nano-horns submitted to thermal oxidation. Int J Hydrogen Energy 35:9070–9081

    Article  Google Scholar 

  178. Ohba T, Kanoh H, Kaneko K (2011) Superuniform molecular nanogate fabrication on graphene sheets of single wall carbon nanohorns for selective molecular separation of CO2 and CH4. Chem Lett 40:1089–1091

    Article  Google Scholar 

  179. Ohba T, Kanoh H, Kaneko K (2012) Facilitation of water penetration through zero-dimensional gates on rolled-up graphene by cluster-chain-cluster transformations. J Phys Chem C 116:12339–12345

    Article  Google Scholar 

  180. Pagona G, Sandanayaka ASD, Araki Y, Fan J, Tagmatarchis N, Charalambidis G, Coutsolelos AG, Boitrel B, Yudasaka M, Iijima S et al (2007) Covalent functionalization of carbon nanohorns with porphyrins: nanohybrid formation and photoinduced electron and energy transfer. Adv Funct Mater 17:1705–1711

    Article  Google Scholar 

  181. Pagona G, Sandanayaka ASD, Hasobe T, Charalambidis G, Coutsolelos AG, Yudasaka M, Iijima S, Tagmatarchis N (2008) Characterization and photoelectrochemical properties of nanostructured thin film composed of carbon nanohorns covalently functionalized with porphyrins. J Phys Chem C 112:15735–15741

    Article  Google Scholar 

  182. Kosaka M, Kuroshima S, Kobayashi K, Sekino S, Ichihashi T, Nakamura S, Yoshitake T, Kubo Y (2009) Single-wall carbon nanohorns supporting Pt catalyst in Direct methanol fuel cells. J Phys Chem C 113:8660–8667

    Article  Google Scholar 

  183. Zhang L, Zheng N, Gao A, Zhu C, Wang Z, Wang Y, Shi Z, Liu Y (2012) A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters. J Power Sources 220:449–454

    Article  Google Scholar 

  184. Brandao L, Passeira C, Gattia DM, Mendes A (2011) Use of single wall carbon nanohorns in polymeric electrolyte fuel cells. J Mater Sci 46:7198–7205

    Article  Google Scholar 

  185. Eblagon KM, Brandao L (2015) RuSe electrocatalysts and single wall carbon nanohorns supports for the oxygen reduction reaction. J Fuel Cell Sci Technol 10(1115/1):4029422

    Google Scholar 

  186. Unni SM, Bhange SN, Illathvalappil R, Mutneja N, Patil KR, Kurungot S (2015) Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells. Small 11:352–360

    Article  Google Scholar 

  187. Vizuete M, Escalonilla JGM, Fierro JLG, Sandanayaka ASD, Hasobe T, Yudasaka M, Iijima S, Ito O, Langa FA (2010) Carbon nanohorn-porphyrin supramolecular assembly for photoinduced electron-transfer processes. Chem A 16:10752–10763

    Google Scholar 

  188. Pagona G, Zervaki GE, Sandanayaka ASD, Ito O, Charalambidis G, Hasobe T, Coutsoleos AG, Tagmatarchis N (2012) Carbon nanohorn-porphyrin dimer hybrid material for enhancing light-energy conversion. J Phys Chem C 116:9439–9449

    Article  Google Scholar 

  189. Lodermeyer F, Costa RD, Casillas R, Kohler FTU, Wasserscheid P, Prato M, Guldi DM (2015) Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy Environ Sci 8:241–246

    Article  Google Scholar 

  190. Zhang S, Tang S, Lei J, Dong H, Ju H (2011) Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J Electroanal Chem 656(1–2):285–288

    Article  Google Scholar 

  191. Gunlycke D, Li J, Mintmire JW, White CT (2007) Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry. Appl Phys Lett 10(1063/1):2783196

    Google Scholar 

  192. Xu B, Yin J, Xia YD, Wan XG, Jiang K, Liu ZG (2010) Electronic and magnetic properties of zigzag graphene nanoribbon with one edge saturated. Appl Phys Lett 10(1063/1):3402762

    Google Scholar 

  193. Sodi CF, Csányi G, Piscanec S, Ferrari AC (2008) Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys Rev B. https://doi.org/10.1103/PhysRevB.77.165427

    Article  Google Scholar 

  194. Maruyama M, Kusakabe K, Tsuneyuki S, Akagi K, Yoshimoto Y, Yamauchi J (2004) Magnetic properties of nanographite with modified zigzag edges. J Phys Chem Solids 65(2–3):119–122

    Article  Google Scholar 

  195. Wu M, Pei Y, Zeng XC (2010) Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon. J Am Chem Soc 132(16):5554–5555

    Article  Google Scholar 

  196. Hod O, Barone V, Peralta JE, Scuseria GE (2007) Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett 7(8):2295–2299

    Article  Google Scholar 

  197. Zheng XH, Wang XL, Abtew TA, Zeng Z (2010) Building half-metallicity in graphene nanoribbons by direct control over edge states occupation. J Phys Chem C 114(9):4190–4193

    Article  Google Scholar 

  198. Dutta S, Manna AK, Pati SK (2009) Intrinsic half-metallicity in modified graphene nanoribbons. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.102.096601

    Article  Google Scholar 

  199. Wang A, Yu W, Huang Z et al (2016) Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci Rep. https://doi.org/10.1038/srep23325

    Article  Google Scholar 

  200. Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC (2009) Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc 131(4):1336–1337

    Article  Google Scholar 

  201. Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130(48):16201–16206

    Article  Google Scholar 

  202. Zhu Y, Higginbotham AL, Tour JM (2009) Covalent functionalization of surfactant-wrapped graphene nanoribbons. Chem Mater 21(21):5284–5291

    Article  Google Scholar 

  203. Sun Z, Kohama S, Zhang Z, Lomeda JR, Tour JM (2010) Soluble graphene through edge-selective functionalization. Nano Res 3(2):117–125

    Article  Google Scholar 

  204. Avinash MB, Subrahmanyam KS, Sundarayya Y, Govindaraju T (2010) Covalent modification and exfoliation of graphene oxide using ferrocene. Nanoscale. https://doi.org/10.1039/c0nr00024h

    Article  Google Scholar 

  205. Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS (2011) Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J Mater Chem 21(10):3371–3377

    Article  Google Scholar 

  206. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105

    Article  Google Scholar 

  207. Bagherzadeh M, Farahbakhsh A (2015) Surface functionalization of graphene. Fundamentals and emerging applications, Graphene Materials. https://doi.org/10.1002/9781119131816.ch2

    Book  Google Scholar 

  208. Choi E-Y, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20(10):1907–1912

    Article  Google Scholar 

  209. Chen C, Zhai W, Lu D, Zhang H, Zheng W (2011) A facile method to prepare stable noncovalent functionalized graphene solution by using thionine. Mater Res Bull 46(4):583–587

    Article  Google Scholar 

  210. Wan J, Wang Y, He D, Wu H, Wang H, Zhou P, Fu M (2012) Influence of polymer/fullerene-graphene structure on organic polymer solar devices. Integr Ferroelect 137(1):1–9

    Article  Google Scholar 

  211. Hsu CL, Lin CT, Huang JH, Chu CW, Wei KH, Li LJ (2012) Layer-by-layer graphene = TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6(6):5031–5039

    Article  Google Scholar 

  212. Wang J, Wang Y, He D, Wu H, Wang H, Zhou P, Fu M, Jiang K, Chen W (2011) Organic photovoltaic devices based on an acceptor of solution-processable functionalized graphene. J Nanosci Nanotechnol 11(11):9432–9438

    Article  Google Scholar 

  213. Liu J, Xie L, Huang W (2011) Transparent, conductive, and flexible graphene films from large-size graphene oxide. Integrat Ferroelect 128(1):105–109

    Article  Google Scholar 

  214. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable Lithium ion batteries. Nano Lett 8:2277–2282

    Article  Google Scholar 

  215. Yu D, Dai L (2009) Self assembled graphene = carbon nanotubes hybrid films for super capacitor. J Phys Chem Lett 1:467–470

    Article  Google Scholar 

  216. Xu C, Wang X, Wang J, Hu H, Wan L (2010) Synthesis and photoelectrical properties of b-Cyclodextrin functionalized graphene materials with high bio-recognition capability. Chem Phys Lett 498:162–167

    Article  Google Scholar 

  217. Wua H, Wanga J, Kanga X, Wanga C, Wanga W, Liua J, Aksayb IA, Lina Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406

    Article  Google Scholar 

  218. Georgakilas V, Otyepka M, Bourlinos AB, Chand V (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  Google Scholar 

  219. Foster JS, Frommer JE (1988) Imaging of liquid crystals using a tunnelling microscope. Nature 333:542–545

    Article  Google Scholar 

  220. Griessl S, Lackinger M, Edelwirth M, Hietschold M, Heckl WM (2002) Self-assembled two-dimensional Molecular host-guest architectures from trimesic acid. Single Mol 3(1):25–31

    Article  Google Scholar 

  221. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845

    Article  Google Scholar 

  222. Chen IWP, Huang CY, Jhou SHS, Zhang YW (2014) Exfoliation and performance properties of non-oxidized graphene in water. Sci Rep. https://doi.org/10.1038/srep03928

  223. Bose S, Kuila T, Mishra AK, Kim NH, Lee JH (2011) Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology. https://doi.org/10.1088/0957-4484/22/40/405603

  224. Manohar S, Mantz AR, Bancroft KE, Hui CY, Jagota A, Vezenov DV (2008) Peeling single-stranded DNA from graphite surface to determine oligonucleotide binding energy by force spectroscopy. Nano Lett 8(12):4365–4372

    Article  Google Scholar 

  225. Kim J, Song SH, Im H-G, Yoon G, Lee D, Choi C, Kim J, Bae B-S, Kang K, Jeon S (2015) Moisture barrier composites made of non-oxidized graphene flakes. Small 11(26):3124–3129

    Article  Google Scholar 

  226. Yang H, Hernandez Y, Schlierf A, Felten A, Eckmann A, Johal S, Louette P, Pireaux JJ, Feng X, Muellen K (2013) A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon 53:357–365

    Article  Google Scholar 

  227. Dong XC, Shi YM, Zhao Y, Chen DM, Ye J, Yao YG, Gao F, Ni ZH, Yu T, Shen ZX et al (2009) Symmetry breaking of graphene monolayers by molecular decoration. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.102.135501

  228. Zhang YH, Liu CJ, Shi WQ, Wang ZQ, Dai LM, Zhang X (2007) Direct measurements of the interaction between pyrene and graphite in aqueous media by single molecule force spectroscopy: understanding the π-π interactions. Langmuir 23(15):7911–7915

    Article  Google Scholar 

  229. An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10(11):4295–4301

    Article  Google Scholar 

  230. Aliyeva S, Alosmanov R, Buniyatzadeh I, Azizov A, Maharramov A (2019) Recent developments in edge-selective functionalization of surface of graphite and derivatives—a review. Soft Mater. https://doi.org/10.1080/1539445X.2019.1600549

    Article  Google Scholar 

  231. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  232. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  233. Yang W, Auciello O, Butler JE, Cai W et al (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1(4):253–257

    Article  Google Scholar 

  234. Chong KF, Loh KP, Vedula SRK, Lim CT et al (2007) Cell adhesion properties on photochemically functionalized diamond. Langmuir 23(10):5615–5621

    Article  Google Scholar 

  235. Zhong YL, Chong KF, May PW, Chen Z-K, Loh KP (2007) Optimizing biosensing properties on undecylenic acid-functionalized diamond. Langmuir 23(10):5824–5830

    Article  Google Scholar 

  236. Young SL, Kellon JE, Hutchison JE (2016) Small gold nanoparticles interfaced to electrodes through molecular linkers: a platform to enhance electron transfer and increase electrochemically active surface area. J Am Chem Soc 138(42):13975–13984

    Article  Google Scholar 

  237. Young SL, Hutchison JE (2019) Selective deposition of metals onto molecularly tethered gold nanoparticles: the influence of silver deposition on oxygen electroreduction. Chem Mater 31:2750–2761

    Article  Google Scholar 

  238. Lasseter TL, Clare BH, Abbott NL, Hamers RJ (2004) Covalently modified silicon and diamond surfaces: resistance to nonspecific protein adsorption and optimization for biosensing. J Am Chem Soc 126(33):10220–10221

    Article  Google Scholar 

  239. Hamers RJ, Butler JE, Lasseter T, Nichols BM, Russell JN, Tse K-Y, Yang W (2005) Molecular and biomolecular monolayers on diamond as an interface to biology. Diam Relat Mater 14(3–7):661–668

    Article  Google Scholar 

  240. Ruther RE, Rigsby ML, Gerken JB et al (2011) Highly stable redox-active molecular layers by covalent grafting to conductive diamond. J Am Chem Soc 133(15):5692–5694

    Article  Google Scholar 

  241. Yao SA, Ruther RE, Zhang L, Franking RA, Hamers RJ, Berry JF (2012) Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J Am Chem Soc 134(38):15632–15635

    Article  Google Scholar 

  242. Nie B, Yang M, Fu W, Liang Z (2015) Surface invasive cleavage assay on a maskless light-directed diamond DNA microarray for genome-wide human SNP mapping. Analyst 140(13):4549–4557

    Article  Google Scholar 

  243. Henke AH, Saunders TP, Pedersen JA, Hamers RJ, (2019) Enhancing electrochemical efficiency of hydroxyl radical formation on diamond electrodes by functionalization with hydrophobic monolayers. Langmuir 35(6):2153–2163

    Google Scholar 

  244. Kondo T, Tamura A, Kawai T (2009) Cobalt phthalocyaninemodified boron-doped diamond electrode for highly sensitive detection of hydrogen peroxide. J Electrochem Soc 156(11):F145–F150

    Article  Google Scholar 

  245. Kondo T, Hoshi H, Honda K, Einaga Y, Fujishima A, Kawai T (2008) Photochemical modification of a boron-doped diamond electrode surface with vinylferrocene. J Phys Chem C 112(31):11887–11892

    Article  Google Scholar 

  246. Kondo T, Taniguchi Y, Yuasa M, Kawai T (2012) Polyoxometalate-modified boron-doped diamond electrodes. Jpn J Appl Phys. https://doi.org/10.1143/jjap.51.090121

    Article  Google Scholar 

  247. Wang J, Firestone MA, Auciello O, Carlisle JA (2004) Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts. Langmuir 20(26):11450–11456

    Article  Google Scholar 

  248. Notsu H, Fukazawa T, Tatsuma T, Tryk DA, Fujishima A (2001) Hydroxyl groups on boron-doped diamond electrodes and their modification with a silane coupling agent. Electrochem Solid-State Lett 4(3):H1–H3

    Article  Google Scholar 

  249. Bouvier P, Delabouglise D, Denoyelle A, Marcus B, Mermoux M, Petit J-P (2005) Erratum: photosensitization of boron-doped diamond by surface grafting of pyrene groups. Electrochem Solid-State Lett 8:E57

    Article  Google Scholar 

  250. Delabouglise D, Marcus B, Mermoux M, Bouvier P et al (2003) Biotin grafting on boron-doped diamond. ChemComm. https://doi.org/10.1039/b308185k

    Article  Google Scholar 

  251. Delamarche E, Sundarababu G, Biebuyck H, Michel B et al (1996) Immobilization of antibodies on a photoactive self-assembled monolayer on gold. Langmuir 12(8):1997–2006

    Article  Google Scholar 

  252. Takahashi K, Tanga M, Takai O, Okamura H (2003) DNA preservation using diamond chips. Diamond Relat Mater 12(3–7):572–576

    Article  Google Scholar 

  253. Yang J-H, Song K-S, Zhang G-J, Degawa M, Sasaki Y, Ohdomari I, Kawarada H (2006) Characterization of DNA hybridization on partially aminated diamond by aromatic compounds. Langmuir 22(26):11245–11250

    Article  Google Scholar 

  254. Nagl A, Hemelaar SR, Schirhagl R (2015) Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review. Anal Bioanal Chem 407(25):7521–7536

    Article  Google Scholar 

  255. Alkahtani MH, Alghannam F, Jiang L, Almethen A et al (2018) Fluorescent nanodiamonds: past, present, and future. Nanophotonics 7(8):1423–1453

    Article  Google Scholar 

  256. Fu C-C, Lee H-Y, Chen K, Lim T-S et al (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104(3):727–732

    Google Scholar 

  257. Bollina R, Landgraf J, Wagner H, Wilhelm R, Knippscheer S, Tabernig B (2006) Performance, production, and applications of advanced metal diamond composite heat spreader. Paper presented at IMAPS 39th international symposium on microelectronics, San Diego, 8–12 October 2006

    Google Scholar 

  258. Mochalin VN, Gogotsi Y (2015) Nanodiamond–polymer composites. Diam Relat Mater 58:161–171

    Article  Google Scholar 

  259. Karami P, Khasraghi SS Hashemi M, Rabiei S, Shojaei A (2019) Polymer/nanodiamond composites—a comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interf Sci. https://doi.org/10.1016/j.cis.2019.04.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Chakrabarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selvam, A., Sharma, R., Sutradhar, S., Chakrabarti, S. (2021). Synthesis of Carbon Allotropes in Nanoscale Regime. In: Hazra, A., Goswami, R. (eds) Carbon Nanomaterial Electronics: Devices and Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1052-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1052-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1051-6

  • Online ISBN: 978-981-16-1052-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics