Skip to main content

Transcriptomics Analyses and the Relationship Between Plant and Plant Growth-Promoting Rhizobacteria (PGPR)

  • Chapter
  • First Online:
Omics Science for Rhizosphere Biology

Abstract

Plants and microbes in the rhizosphere are constantly interacting in a chain, from pathogens (deleterious) to symbionts (beneficial). Relationships between the two sides are very large at various stages of plant development, and signaling molecules play a significant role on both sides. The result of this conversation is that the microbe is absorbed by the plant’s roots and responds to it. Among the microbes that approach the roots of plants during this signal conversation are the plant growth-promoting rhizobacteria (PGPR). In order to emphasize the beneficial effects of PGPR on the plant, it is important for the roots of the plants to be colonized by PGPR. Colonization of plant roots by PGPR induces beneficial effects on the plant, such as increasing the overall growth of the plant, resistance to disease, and increasing tolerance to abiotic stresses. Among the mechanisms used by PGPR to increase plant growth are: eliminating the need for plant nitrogen by fixing the molecular nitrogen of the atmosphere, increasing the bioavailability of nutrients needed by plants such as phosphorus, potassium, and iron producing various growth hormones and regulators such as auxins, cytokinins, and gibberellins, reducing the level of ethylene produced by plant roots under stress conditions, etc. Since PGPR may modulate plant regulatory mechanisms, an important question to be answered is how is the plant–microbe relationship, and what factors play a role in it, and whether or not the microbes can influence the expression of different plant genes at different times? To answer these questions, transcriptomics analysis is an ideal technique that has been addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adilakshmi T, Ayling PD, Ratledge C (2000) Polyadenylylation in mycobacteria: evidence for oligo (dT)-primed cDNA synthesis. Microbiology 146(3):633–638

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Anamika K, Verma S, Jere A, Desai A (2016) Transcriptomic profiling using next generation sequencing-advances, advantages, and challenges. In: Next generation sequencing-advances, applications and challenges, vol 9, pp 7355–7365

    Google Scholar 

  • Angeloni F, Wagemaker N, Vergeer P, Ouborg J (2012) Genomic toolboxes for conservation biologists. Evol Appl 5(2):130–143

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Banerjee MR, Yasmin L (2002). Sulfur oxidizing rhizobacteria: an innovative environment friendly soil biotechnological tool for better canola production. In: Proceeding of Agroenviron, Cairo, Egypt, 1–7

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Boitard S, Schlötterer C, Nolte V, Pandey RV, Futschik A (2012) Detecting selective sweeps from pooled next-generation sequencing samples. Mol Biol Evol 29(9):2177–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito LF, Irla M, Kalinowski J, Wendisch VF (2017) Detailed transcriptome analysis of the plant growth promoting Paenibacillus riograndensis SBR5 by using RNA-seq technology. BMC Genomics, 18(1):1–15

    Google Scholar 

  • Brown TA (2002) Genomes, 2nd edn. Wiley-Liss, Oxford, p 2002. https://www.ncbi.nlm.nih.gov/books/NBK21128/

    Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    Article  CAS  PubMed  Google Scholar 

  • Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, Renou JP, Touraine B (2008) Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol Plant-Microbe Int 21(2):244–259

    Article  CAS  Google Scholar 

  • Chapman JR, Waldenström J (2015) With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One 10(11):e0141853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chauhan PS, Lata C, Tiwari S, Chauhan AS, Mishra SK, Agrawal L, Chakrabarty D, Nautiyal CS (2019) Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci Rep 9(1):1–13

    Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly MJ (2002) Estimating the human gene count. Cell 109(3):283–284

    Article  CAS  PubMed  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50(4):227–230

    Article  CAS  PubMed  Google Scholar 

  • Dey RK, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159(4):371–394

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Article  CAS  Google Scholar 

  • Fan B, Carvalhais LC, Becker A, Fedoseyenko D, von Wirén N, Borriss R (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 12(1):116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández L, Breidenstein EB, Song D, Hancock RE (2012) Role of intracellular proteases in the antibiotic resistance, motility, and biofilm formation of Pseudomonas aeruginosa. Antimicrob Agents Chemother 56(2):1128–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filiatrault MJ (2011) Progress in prokaryotic transcriptomics. Curr Opin Microbiol 14(5):579–586

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Glick BR, Pasternak JJ (eds) Molecular biotechnology principles and applications of recombinant DNA, 3rd edn. ASM Press, Washington, pp 436–454

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JB (2000) ‘Pseudomonas’ 99, The seventh international congress on Pseudomonas: biotechnology and pathogenesis’, organized by the American Society for Microbiology, was held in Maui, HI, USA, 1–5 September 1999. Trends Microbiol 8(2):55–57

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    Article  CAS  Google Scholar 

  • Hambraeus G, von Wachenfeldt C, Hederstedt L (2003) Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Gen Genomics 269(5):706–714

    Article  CAS  Google Scholar 

  • Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation, 4(2), p 25

    Google Scholar 

  • Hassan MK, McInroy JA, Kloepper JW (2019) The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture 9(7):142

    Article  CAS  Google Scholar 

  • Heidarpour A, Aliasgharzad N, Khoshmanzar E, Lajayer BA (2019) Bio-removal of Zn from contaminated water by using green algae isolates. Environ Technol Innov 16:100464

    Article  Google Scholar 

  • Hiltner L (1904) Uber nevere Erfahrungen und Probleme auf dem Gebiet der Boden Bakteriologie und unter besonderer Beurchsichtigung der Grundungung und Broche. Arbeit Deut Landw Ges Berlin 98:59–78

    Google Scholar 

  • Hogenesch JB, Ching KA, Batalov S, Su AI, Walker JR, Zhou Y et al (2001) A comparison of the Celera and Ensembl predicted gene sets reveals little overlap in novel genes. Cell 106(4):413–415

    Article  CAS  PubMed  Google Scholar 

  • Hrdlickova R, Toloue M, Tian B (2017) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8(1):e1364

    Article  CAS  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7(8):1267–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jatan R, Tiwari S, Asif MH, Lata C (2019) Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ Exp Bot 157:217–227

    Article  CAS  Google Scholar 

  • Josefsen MH, Löfström C, Hansen T, Reynisson E, Hoorfar J (2012) Instrumentation and fluorescent chemistries used in qPCR. In: Quantitative real-time PCR in applied microbiology. Caister Academic Press, Norfolk, pp 27–52

    Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4(3):179–183

    Article  Google Scholar 

  • Kang W, Zhu X, Wang Y, Chen L, Duan Y (2018) Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC Plant Biol 18(1):1–14

    Google Scholar 

  • Karakach TK, Flight RM, Douglas SE, Wentzell PD (2010) An introduction to DNA microarrays for gene expression analysis. Chemom Intell Lab Syst 104(1):28–52

    Article  CAS  Google Scholar 

  • Kasa P, Modugapalem H, Battini K (2015) Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Biol Med 6(2):360

    Google Scholar 

  • Kennell D (2002) Processing endoribonucleases and mRNA degradation in bacteria. J Bacteriol 184(17):4645–4657

    Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskés ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36(8):1229–1244

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    Article  CAS  PubMed  Google Scholar 

  • Khoshmanzar E, Aliasgharzad N, Neyshabouri MR, Khoshru B, Arzanlou M, Lajayer BA (2020) Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. Int J Environ Sci Technol 17(2):869–878

    Article  CAS  Google Scholar 

  • Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12(6):3966–3988

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroczek RA, Siebert E (1990) Optimization of northern analysis by vacuum-blotting, RNA-transfer visualization, and ultraviolet fixation. Anal Biochem 184(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K et al (2006) The real-time polymerase chain reaction. Mol Asp Med 27(2–3):95–125

    Article  CAS  Google Scholar 

  • Lakey DL, Zhang Y, Talaat AM, Samten B, DesJardin LE, Eisenach KD et al (2002) Priming reverse transcription with oligo (dT) does not yield representative samples of Mycobacterium tuberculosis cDNA. Microbiology 148(8):2567–2572

    Article  CAS  PubMed  Google Scholar 

  • Lamas A, Franco CM, Regal P, Miranda JM, Vázquez B, Cepeda A (2016) High-throughput platforms in real-time PCR and applications. In: Polymerase chain reaction for biomedical applications, vol 14, p 15

    Google Scholar 

  • Lang JE, Magbanua MJM, Scott JH, Makrigiorgos GM, Wang G, Federman S et al (2009) A comparison of RNA amplification techniques at sub-nanogram input concentration. BMC Genomics 10(1):326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee-Liu D, Almonacid LI, Faunes F, Melo F, Larrain J (2012). Transcriptomics using next generation sequencing technologies. In: Xenopus protocols. Humana Press, Totowa, NJ, pp 293–317

    Google Scholar 

  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13(5):e1005457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mantione KJ, Kream RM, Kuzelova H, Ptacek R, Raboch J, Samuel JM, Stefano GB (2014) Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq. Med Sci Monit Basic Res 20:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Mitra D (2017) Isolation and characterization of potential nutrient mobilizer and plant growth promoters from some typical harsh environment of Karnataka. M.Sc. Thesis, Graphic Era University. Dehradun, Uttarakhand and ICAR-IIHR, Bengaluru

    Google Scholar 

  • Mitra D, Sharma K, Uniyal N, Chauhan A, Sarkar P (2016) Study on plant hormone (indole-3-acetic acid) producing level and other plant growth promotion ability (pgpa) by Asparagus racemosus rhizobacteria. J Chem Pharm Res 8:995–1002

    CAS  Google Scholar 

  • Mitra D, Jain D, Panneerselvam P (2019a) Microbial resources for sustainable agriculture. LAMBERT Academic Publishing. 1–137 pp. isbn:978-613-9-83608-6

    Google Scholar 

  • Mitra D, Snežana A, Panneerselvam P, Manisha SA, Tanja V, Ganeshamurthy AN, Devvret V, Poonam RT, Divya J (2019b) Plant growth promoting microorganisms (PGPMs) helping in sustainable agriculture: current perspective. Int J Agric Sci Veter Med 7(2):50–74

    Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56(417):1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL, O'Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5(10):922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustafa K, Cross JM (2016) Genetic approaches to study plant responses to environmental stresses: an overview. Biology 5(2):20

    Article  PubMed Central  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  CAS  PubMed  Google Scholar 

  • Nonis A, De Nardi B, Nonis A (2014) Choosing between RT-qPCR and RNA-seq: a back-of-the-envelope estimate towards the definition of the break-even-point. Anal Bioanal Chem 406(15):3533–3536

    CAS  PubMed  Google Scholar 

  • Okoniewski MJ, Miller CJ (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 7(1):276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P et al (2009) Direct RNA sequencing. Nature 461(7265):814–818

    Article  CAS  PubMed  Google Scholar 

  • Panneerselvam P, Senapati A, Kumar U, Sharma L, Lepcha P, Prabhukarthikeyan SR, Jahan A, Parameshwaran C, Govindharaj GPP, Lenka S, Nayak PK (2019) Antagonistic and plant-growth promoting novel Bacillus species from long-term organic farming soils from Sikkim, India. 3 Biotech 9(11):416

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. In: Expressed sequence tags (ESTs). Humana Press, Totowa, pp 1–12

    Chapter  Google Scholar 

  • Patino WD, Mian OY, Hwang PM (2002) Serial analysis of gene expression: technical considerations and applications to cardiovascular biology. Circ Res 91(7) 565–569

    Google Scholar 

  • Pfaffl MW (2012) Quantification strategies in real-time polymerase chain reaction. Quantitative real-time PCR. Appl Microbiol 53–62

    Google Scholar 

  • Pieterse CM, de Jonge R, Berendsen RL (2016) The soil-borne supremacy. Trends Plant Sci 21(3):171–173

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Riggins GJ (2001) Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol 19(11):2948–2958

    Article  CAS  PubMed  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89(3):486–493

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64(2):153–166

    Google Scholar 

  • Saghafi D, Ghorbanpour M, Asgari Lajayer B (2018) Efficiency of rhizobium strains as plant growth-promoting rhizobacteria on morphophysiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18(1):253–268

    CAS  Google Scholar 

  • Saghafi D, Delangiz N, Asgari Lajayer B, Ghorbanpour M (2019a) An overview of the improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech 9:261

    Article  PubMed  PubMed Central  Google Scholar 

  • Saghafi D, Ghorbanpour M, Shirafkan Ajirloo H, Asgari Lajayer B (2019b) Enhancement of growth and salt tolerance in Brassica napus L. seedlings by halotolerant rhizobium strains containing ACC deaminase activity. Plant Physiol Rep 24:225–235

    Article  CAS  Google Scholar 

  • Saghafi D, Asgari Lajayer B, Ghorbanpour M (2020) Engineering bacterial ACC deaminase for improving plant productivity under stressful conditions. In: Sharma V, Salwan R, Al-Ani LKT (eds) Molecular aspects of plant beneficial microbes in agriculture. Elsevier, pp 259–272

    Google Scholar 

  • Sarikhani MR, Khoshru B, Oustan S (2016) Efficiency of some bacterial strains in potassium release from mica and phosphate solubilization under in vitro conditions. Geomicrobiol J 33(9):832–838

    Article  CAS  Google Scholar 

  • Sarikhani MR, Aliasgharzad N, Khoshru B (2019a) P solubilizing potential of some plant growth promoting bacteria used as ingredient in phosphatic biofertilizers with emphasis on growth promotion of Zea mays L. Geomicrobiol J 37(4):327–335

    Article  CAS  Google Scholar 

  • Sarikhani MR, Khoshru B, Greiner R (2019b) Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World J Microbiol Biotechnol 35(8):126

    Article  PubMed  CAS  Google Scholar 

  • Schlötterer C (2003) Hitchhiking mapping–functional genomics from the population genetics perspective. Trends Genet 19(1):32–38

    Article  PubMed  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka E, Wang-Pruski G, Faure D, Reiter B, Glick BR, Nowak J (2005) Burkholderia phytofirminssp. Nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Shaikh S, Wani S, Sayyed R (2018) Impact of interactions between rhizosphere and rhizobacteria: a review. J Bacteriol Mycol 5:1058

    Google Scholar 

  • Sharma A, Nitharwal RG, Singh B, Dar A, Dasgupta S, Dhar SK (2009) Helicobacter pylori single-stranded DNA binding protein–functional characterization and modulation of H. pylori DnaB helicase activity. FEBS J 276(2):519–531

    Article  CAS  PubMed  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cura JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774

    Article  CAS  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12(8):386–393

    Article  CAS  PubMed  Google Scholar 

  • Skvortsov TA, Azhikina TL (2010) A review of the transcriptome analysis of bacterial pathogens in vivo: problems and solutions. Russian J Bioorg Chem 36(5):550–559

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg A, HÃ¥kansson J, Xian X, Semb H, Kubista M (2004) Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 50(3):509–515

    Google Scholar 

  • Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R et al (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25(12):705–712

    Article  PubMed  Google Scholar 

  • Swain SM, Singh DP (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sci 10(3):123–129

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: The rhizosphere. CRC Press, Boca Raton, pp 35–56

    Google Scholar 

  • Valdés A, Ibáñez C, Simó C, García-Cañas V (2013) Recent transcriptomics advances and emerging applications in food science. TrAC Trends Anal Chem 52:142–154

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8(1):1–17

    Article  CAS  Google Scholar 

  • Velculescu VE, Vogelstein B, Kinzler KW (2000) Analysing uncharted transcriptomes with SAGE. Trends Genet 16(10):423–425

    Article  CAS  PubMed  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner D (2000) Organic signals between plants and microorganisms. In: The rhizosphere. CRC Press, Boca Raton, pp 213–238

    Google Scholar 

  • Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20(1):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie S, Wu H, Chen L, Zang H, Xie Y, Gao X (2015) Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol 15(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Yang D, Wang D, Miao Y, Shao J, Zhou X, Shen Q (2015) Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics 16(1):685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Wang P, Tian H, Tao Z, Guo T (2020) Transcriptome analysis of ice plant growth-promoting endophytic bacterium Halomonas sp. Strain MC1 to identify the genes involved in salt tolerance. Microorganisms 8(1):88

    Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behnam Asgari Lajayer or Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moradi, S. et al. (2021). Transcriptomics Analyses and the Relationship Between Plant and Plant Growth-Promoting Rhizobacteria (PGPR). In: Pudake, R.N., Sahu, B.B., Kumari, M., Sharma, A.K. (eds) Omics Science for Rhizosphere Biology. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0889-6_6

Download citation

Publish with us

Policies and ethics