Skip to main content

Drug Repurposing: An Avenue Toward Stress Medicine in Cancer Therapy

  • Chapter
  • First Online:
Oxidative Stress
  • 696 Accesses

Abstract

Cancer cells harbor a higher level of radical species owing to the metabolic reprogramming and signaling aberrations required for the continuously uncontrolled proliferation. The high basal level of reactive oxygen species (ROS) in cancer cells renders them more susceptible to reagents that further augment ROS generation or that weaken antioxidant defenses, proposing that the augment of oxidative stress exclusively in cancer cells provides a rational therapeutic strategy for anticancer drug development. Taking advantage of an attractive strategy termed drug repurposing, which describes identifying new medical indications for existing drugs with less risk, lower cost, and shorter development timeline, a portfolio of non-oncology drugs with the potential of boosting oxidative stress is repurposed to extend the arsenal of cancer therapies. In this chapter, we will present the growing data that repurposing of old drugs, especially agents modulating oxidative stress, for anticancer activity, provides an opportunity to rapidly advance therapeutic strategies into clinical trials at a relatively low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  3. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim HS, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17(1):41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X, et al. NADPH oxidase 1-dependent ROS is crucial for TLR4 signaling to promote tumor metastasis of non-small cell lung cancer. Tumour Biol. 2015;36(3):1493–502.

    Article  CAS  PubMed  Google Scholar 

  7. Peiris-Pages M, et al. Metastasis and oxidative stress: are antioxidants a metabolic driver of progression? Cell Metab. 2015;22(6):956–8.

    Article  CAS  PubMed  Google Scholar 

  8. Klaunig JE. Oxidative stress and cancer. Curr Pharm Des. 2018;24(40):4771–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez M, et al. Cross talk between eIF2alpha and eEF2 phosphorylation pathways optimizes translational arrest in response to oxidative stress. iScience. 2019;20:466–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noh J, et al. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat Commun. 2015;6:6907.

    Article  CAS  PubMed  Google Scholar 

  11. Perillo B, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pessetto ZY, et al. Drug repurposing for gastrointestinal stromal tumor. Mol Cancer Ther. 2013;12(7):1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertolini F, Sukhatme VP, Bouche G. Drug repurposing in oncology--patient and health systems opportunities. Nat Rev Clin Oncol. 2015;12(12):732–42.

    Article  PubMed  Google Scholar 

  14. Pushpakom S, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.

    Article  CAS  PubMed  Google Scholar 

  15. Xue H, et al. Review of drug repositioning approaches and resources. Int J Biol Sci. 2018;14(10):1232–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corsello SM, et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer. 2020;1(2):235–48.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levine RL, et al. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996;93(26):15036–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies AM, Holt AG. Why antioxidant therapies have failed in clinical trials. J Theor Biol. 2018;457:1–5.

    Article  CAS  Google Scholar 

  19. Tiganis T. Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci. 2011;32(2):82–9.

    Article  CAS  PubMed  Google Scholar 

  20. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–21.

    Article  CAS  PubMed  Google Scholar 

  21. Moldogazieva NT, et al. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res. 2018;52(5):507–43.

    Article  CAS  PubMed  Google Scholar 

  22. Di Meo S, et al. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev. 2016;2016:1245049.

    Google Scholar 

  23. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–48.

    Article  CAS  PubMed  Google Scholar 

  24. Tripathi DN, Walker CL. The peroxisome as a cell signaling organelle. Curr Opin Cell Biol. 2016;39:109–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol. 2013;15(10):1186–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–66.

    Article  CAS  PubMed  Google Scholar 

  27. Laurindo FR, Araujo TL, Abrahão TB. Nox NADPH oxidases and the endoplasmic reticulum. Antioxid Redox Signal. 2014;20(17):2755–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramming T, et al. A PDI-catalyzed thiol-disulfide switch regulates the production of hydrogen peroxide by human Ero1. Free Radic Biol Med. 2015;83:361–72.

    Article  CAS  PubMed  Google Scholar 

  29. Yoboue ED, Sitia R, Simmen T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis. 2018;9(3):331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21(3):396–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010;5(1):51–66.

    Article  CAS  PubMed  Google Scholar 

  32. Tan BL, et al. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McCord JM, Roy RS, Schaffer SW. Free radicals and myocardial ischemia. The role of xanthine oxidase. Adv Myocardiol. 1985;5:183–9.

    Article  CAS  PubMed  Google Scholar 

  34. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988;263(33):17205–8.

    Article  CAS  PubMed  Google Scholar 

  35. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711–60.

    Article  CAS  PubMed  Google Scholar 

  36. Mattill HA. Antioxidants. Annu Rev Biochem. 1947;16:177–92.

    Article  CAS  PubMed  Google Scholar 

  37. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  38. Alfonso-Prieto M, et al. The molecular mechanism of the catalase reaction. J Am Chem Soc. 2009;131(33):11751–61.

    Article  CAS  PubMed  Google Scholar 

  39. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87.

    Article  CAS  PubMed  Google Scholar 

  40. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(7):1957–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morris CM, et al. Brain iron homeostasis. J Inorg Biochem. 1992;47(3–4):257–65.

    Article  CAS  PubMed  Google Scholar 

  42. Bento I, et al. Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr D Biol Crystallogr. 2007;63(Pt 2):240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today. 2005;10(4):267–73.

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez-Marcos PJ, Nóbrega-Pereira S. NADPH: new oxygen for the ROS theory of aging. Oncotarget. 2016;7(32):50814–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cheng X, Ku CH, Siow RC. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med. 2013;64:4–11.

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi M, Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal. 2005;7(3–4):385–94.

    Article  CAS  PubMed  Google Scholar 

  47. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8(1–2):76–87.

    Article  CAS  PubMed  Google Scholar 

  48. Kim S, et al. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson's disease animal model. Neuropharmacology. 2020;167:107989.

    Article  CAS  PubMed  Google Scholar 

  49. Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol. 2015;401:213–20.

    Article  CAS  PubMed  Google Scholar 

  50. Waxman S, Anderson KC. History of the development of arsenic derivatives in cancer therapy. Oncologist. 2001;6(Suppl 2):3–10.

    Article  CAS  PubMed  Google Scholar 

  51. Shen ZY, et al. Arsenic trioxide induces apoptosis of oesophageal carcinoma in vitro. Int J Mol Med. 1999;4(1):33–7.

    CAS  PubMed  Google Scholar 

  52. Shen ZX, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89(9):3354–60.

    Article  CAS  PubMed  Google Scholar 

  53. Chow SK, Chan JY, Fung KP. Inhibition of cell proliferation and the action mechanisms of arsenic trioxide (As2O3) on human breast cancer cells. J Cell Biochem. 2004;93(1):173–87.

    Article  CAS  PubMed  Google Scholar 

  54. Nakagawa Y, et al. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci. 2002;70(19):2253–69.

    Article  CAS  PubMed  Google Scholar 

  55. Zheng J, et al. Arsenic trioxide induces apoptosis of HPV16 DNA-immortalized human cervical epithelial cells and selectively inhibits viral gene expression. Int J Cancer. 1999;82(2):286–92.

    Article  CAS  PubMed  Google Scholar 

  56. Zhao XY, et al. Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. Br J Pharmacol. 2008;154(1):105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu M, et al. Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch Toxicol. 2013;87(6):1025–35.

    Article  CAS  PubMed  Google Scholar 

  58. Thomas-Schoemann A, et al. Arsenic trioxide exerts antitumor activity through regulatory T cell depletion mediated by oxidative stress in a murine model of colon cancer. J Immunol. 2012;189(11):5171–7.

    Article  CAS  PubMed  Google Scholar 

  59. Griffin RJ, et al. Arsenic trioxide induces selective tumour vascular damage via oxidative stress and increases thermosensitivity of tumours. Int J Hyperth. 2003;19(6):575–89.

    Article  CAS  Google Scholar 

  60. Jing Y, et al. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999;94(6):2102–11.

    Article  CAS  PubMed  Google Scholar 

  61. Gartenhaus RB, et al. Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state. Clin Cancer Res. 2002;8(2):566–72.

    CAS  PubMed  Google Scholar 

  62. Akay C, et al. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol. 2014;20(1):39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang X, et al. Human immunodeficiency virus protease inhibitor ritonavir inhibits cholesterol efflux from human macrophage-derived foam cells. Am J Pathol. 2007;171(1):304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deng W, et al. HIV protease inhibitors elicit volume-sensitive Cl- current in cardiac myocytes via mitochondrial ROS. J Mol Cell Cardiol. 2010;49(5):746–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soprano M, et al. Oxidative stress mediates the antiproliferative effects of nelfinavir in breast cancer cells. PLoS One. 2016;11(6):e0155970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Xiang T, et al. Nelfinavir, an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway. Cancer Lett. 2015;364(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  67. Kushchayeva Y, et al. The HIV protease inhibitor nelfinavir down-regulates RET signaling and induces apoptosis in medullary thyroid cancer cells. J Clin Endocrinol Metab. 2014;99(5):E734–45.

    Article  CAS  PubMed  Google Scholar 

  68. Gratton R, et al. Lopinavir/ritonavir treatment induces oxidative stress and caspaseindependent apoptosis in human glioblastoma U-87 MG cell line. Curr HIV Res. 2018;16(2):106–12.

    Article  CAS  PubMed  Google Scholar 

  69. Lü JM, et al. Ginsenoside Rb1 blocks ritonavir-induced oxidative stress and eNOS downregulation through activation of estrogen receptor-beta and upregulation of SOD in human endothelial cells. Int J Mol Sci. 2019;20(2):294.

    Article  PubMed Central  CAS  Google Scholar 

  70. Waibel S, et al. Ritonavir-induced suicidal death of human erythrocytes. Basic Clin Pharmacol Toxicol. 2016;119(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  71. Arend C, Brandmann M, Dringen R. The antiretroviral protease inhibitor ritonavir accelerates glutathione export from cultured primary astrocytes. Neurochem Res. 2013;38(4):732–41.

    Article  CAS  PubMed  Google Scholar 

  72. Larder BA, Darby G, Richman DD. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989;243(4899):1731–4.

    Article  CAS  PubMed  Google Scholar 

  73. Larder BA, Kemp SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989;246(4934):1155–8.

    Article  CAS  PubMed  Google Scholar 

  74. Wheeler S, et al. Zidovudine-induced diaphragmatic contractile dysfunction: impact of an antioxidant diet. Respirology. 2005;10(2):171–6.

    Article  PubMed  Google Scholar 

  75. Papparella I, et al. Vitamin C prevents zidovudine-induced NAD(P)H oxidase activation and hypertension in the rat. Cardiovasc Res. 2007;73(2):432–8.

    Article  CAS  PubMed  Google Scholar 

  76. Banerjee A, et al. Zidovudine (AZT) and hepatic lipid accumulation: implication of inflammation, oxidative and endoplasmic reticulum stress mediators. PLoS One. 2013;8(10):e76850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mattson DM, et al. Cisplatin combined with zidovudine enhances cytotoxicity and oxidative stress in human head and neck cancer cells via a thiol-dependent mechanism. Free Radic Biol Med. 2009;46(2):232–7.

    Article  CAS  PubMed  Google Scholar 

  78. Apostolova N, et al. Enhanced oxidative stress and increased mitochondrial mass during efavirenz-induced apoptosis in human hepatic cells. Br J Pharmacol. 2010;160(8):2069–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bertrand L, Toborek M. Dysregulation of endoplasmic reticulum stress and Autophagic responses by the antiretroviral drug Efavirenz. Mol Pharmacol. 2015;88(2):304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hecht M, et al. Cytotoxic effect of Efavirenz in BxPC-3 pancreatic cancer cells is based on oxidative stress and is synergistic with ionizing radiation. Oncol Lett. 2018;15(2):1728–36.

    PubMed  Google Scholar 

  81. Apostolova N, et al. ER stress in human hepatic cells treated with Efavirenz: mitochondria again. J Hepatol. 2013;59(4):780–9.

    Article  CAS  PubMed  Google Scholar 

  82. Weiß M, et al. Efavirenz causes oxidative stress, endoplasmic reticulum stress, and autophagy in endothelial cells. Cardiovasc Toxicol. 2016;16(1):90–9.

    Article  PubMed  CAS  Google Scholar 

  83. Lin CC, Yin MC. Vitamins B depletion, lower iron status and decreased antioxidative defense in patients with chronic hepatitis C treated by pegylated interferon alfa and ribavirin. Clin Nutr. 2009;28(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  84. Noshy MM, Hussien NA, El-Ghor AA. Evaluation of the role of the antioxidant silymarin in modulating the in vivo genotoxicity of the antiviral drug ribavirin in mice. Mutat Res. 2013;752(1–2):14–20.

    Article  CAS  PubMed  Google Scholar 

  85. Sharma S, Baksi R, Agarwal M. Repositioning of anti-viral drugs as therapy for cervical cancer. Pharmacol Rep. 2016;68(5):983–9.

    Article  CAS  PubMed  Google Scholar 

  86. Hileman EO, et al. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol. 2004;53(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  87. Huang P, et al. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407(6802):390–5.

    Article  CAS  PubMed  Google Scholar 

  88. LaVallee TM, et al. 2-Methoxyestradiol inhibits proliferation and induces apoptosis independently of estrogen receptors alpha and beta. Cancer Res. 2002;62(13):3691–7.

    CAS  PubMed  Google Scholar 

  89. Golab J, et al. Antitumor effects of photodynamic therapy are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem. 2003;278(1):407–14.

    Article  PubMed  CAS  Google Scholar 

  90. Florczak U, et al. 2-Methoxyestradiol-induced radiosensitization is independent of SOD but depends on inhibition of Akt and DNA-PKcs activities. Radiother Oncol. 2009;92(3):334–8.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Q, et al. Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Cancer Lett. 2011;313(2):201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ding L, et al. Underlying mechanism of 2-methoxyestradiol-induced apoptosis and growth arrest in SKOV3 human ovarian cancer cells. Eur Rev Med Pharmacol Sci. 2015;19(11):2084–90.

    CAS  PubMed  Google Scholar 

  93. Zhou J, Du Y. Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Mol Cancer Res. 2012;10(6):768–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gao N, et al. 2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Akt-dependent process. Oncogene. 2005;24(23):3797–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen Y, et al. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008;15(1):171–82.

    Article  CAS  PubMed  Google Scholar 

  96. Loven DP, Leeper DB, Oberley LW. Superoxide dismutase levels in Chinese hamster ovary cells and ovarian carcinoma cells after hyperthermia or exposure to cycloheximide. Cancer Res. 1985;45(7):3029–33.

    CAS  PubMed  Google Scholar 

  97. Thews O, et al. Possible protective effects of alpha-tocopherol on enhanced induction of reactive oxygen species by 2-methoxyestradiol in tumors. Adv Exp Med Biol. 2005;566:349–55.

    Article  CAS  PubMed  Google Scholar 

  98. Lu J, Holmgren A. Thioredoxin system in cell death progression. Antioxid Redox Signal. 2012;17(12):1738–47.

    Article  CAS  PubMed  Google Scholar 

  99. Sachweh MC, et al. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells. Oncotarget. 2015;6(18):16488–506.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gallegos A, et al. Transfection with human thioredoxin increases cell proliferation and a dominant-negative mutant thioredoxin reverses the transformed phenotype of human breast cancer cells. Cancer Res. 1996;56(24):5765–70.

    CAS  PubMed  Google Scholar 

  101. Bhatia M, et al. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol. 2016;8:68–78.

    Article  CAS  PubMed  Google Scholar 

  102. Wangpaichitr M, et al. The relationship of thioredoxin-1 and cisplatin resistance: its impact on ROS and oxidative metabolism in lung cancer cells. Mol Cancer Ther. 2012;11(3):604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang J, et al. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci. 2017;38(9):794–808.

    Article  CAS  PubMed  Google Scholar 

  104. Stafford WC, et al. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med. 2018;10(428):eaaf7444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. McKeage MJ. Gold opens mitochondrial pathways to apoptosis. Br J Pharmacol. 2002;136(8):1081–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Roder C, Thomson MJ. Auranofin: repurposing an old drug for a golden new age. Drugs R D. 2015;15(1):13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fan C, et al. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis. 2014;5(4):e1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fiskus W, et al. Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res. 2014;74(9):2520–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zou P, et al. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer. Oncotarget. 2015;6(34):36505–21.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Marzano C, et al. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic Biol Med. 2007;42(6):872–81.

    Article  CAS  PubMed  Google Scholar 

  111. Hou GX, et al. Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis. 2018;9(2):89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med. 1999;27(9–10):922–35.

    Article  CAS  PubMed  Google Scholar 

  113. Meister A. Selective modification of glutathione metabolism. Science. 1983;220(4596):472–7.

    Article  CAS  PubMed  Google Scholar 

  114. Yang Y, et al. γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level. Redox Biol. 2019;20:157–66.

    Article  CAS  PubMed  Google Scholar 

  115. Doxsee DW, et al. Sulfasalazine-induced cystine starvation: potential use for prostate cancer therapy. Prostate. 2007;67(2):162–71.

    Article  CAS  PubMed  Google Scholar 

  116. Estrela JM, Ortega A, Obrador E. Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci. 2006;43(2):143–81.

    Article  CAS  PubMed  Google Scholar 

  117. Schnelldorfer T, et al. Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer. 2000;89(7):1440–7.

    Article  CAS  PubMed  Google Scholar 

  118. Lo M, et al. The xc- cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer. 2008;99(3):464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ma MZ, et al. Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett. 2015;368(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  120. Lim JKM, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A. 2019;116(19):9433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wahl C, et al. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest. 1998;101(5):1163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gout PW, et al. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia. 2001;15(10):1633–40.

    Article  CAS  PubMed  Google Scholar 

  123. Cildag S, Senturk T. Sulfasalazine-related hypersensitivity reactions in patients with rheumatic diseases. J Clin Rheumatol. 2017;23(2):77–9.

    Article  PubMed  Google Scholar 

  124. Lo M, et al. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol. 2010;17(3):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Narang VS, et al. Suppression of cystine uptake by sulfasalazine inhibits proliferation of human mammary carcinoma cells. Anticancer Res. 2003;23(6c):4571–9.

    CAS  PubMed  Google Scholar 

  126. Okazaki S, et al. Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma. Cancer Sci. 2019;110(11):3453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zheng Z, et al. The X(c)(-) inhibitor sulfasalazine improves the anti-cancer effect of pharmacological vitamin C in prostate cancer cells via a glutathione-dependent mechanism. Cell Oncol (Dordr). 2020;43(1):95–106.

    Article  CAS  Google Scholar 

  128. Hamilton D, et al. A novel missense mutation in the gamma-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production. Blood. 2003;102(2):725–30.

    Article  CAS  PubMed  Google Scholar 

  129. Drew R, Miners JO. The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem Pharmacol. 1984;33(19):2989–94.

    Article  CAS  PubMed  Google Scholar 

  130. Dusre L, et al. Potentiation of doxorubicin cytotoxicity by buthionine sulfoximine in multidrug-resistant human breast tumor cells. Cancer Res. 1989;49(3):511–5.

    CAS  PubMed  Google Scholar 

  131. Lin LC, et al. γ-Glutamylcysteine synthetase (γ-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells. Life Sci. 2018;198:25–31.

    Article  CAS  PubMed  Google Scholar 

  132. Kramer RA, et al. Chemosensitization of L-phenylalanine mustard by the thiol-modulating agent buthionine sulfoximine. Cancer Res. 1987;47(6):1593–7.

    CAS  PubMed  Google Scholar 

  133. Hedley DW, et al. Antileukemic action of buthionine sulfoximine: evidence for an intrinsic death mechanism based on oxidative stress. Leukemia. 1998;12(10):1545–52.

    Article  CAS  PubMed  Google Scholar 

  134. Reliene R, Schiestl RH. Glutathione depletion by buthionine sulfoximine induces DNA deletions in mice. Carcinogenesis. 2006;27(2):240–4.

    Article  CAS  PubMed  Google Scholar 

  135. O'Dwyer PJ, et al. Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J Clin Oncol. 1996;14(1):249–56.

    Article  CAS  PubMed  Google Scholar 

  136. Kito M, et al. Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2002;291(4):861–7.

    Article  CAS  PubMed  Google Scholar 

  137. Anderson CP, et al. Depletion of glutathione by buthionine sulfoxine is cytotoxic for human neuroblastoma cell lines via apoptosis. Exp Cell Res. 1999;246(1):183–92.

    Article  CAS  PubMed  Google Scholar 

  138. Rigas B, Kashfi K. Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol Med. 2004;10(7):324–30.

    Article  CAS  PubMed  Google Scholar 

  139. Williams JL, et al. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res. 2001;61(8):3285–9.

    CAS  PubMed  Google Scholar 

  140. Lavagna C, et al. Antiproliferative effects of nitrosulindac on human colon adenocarcinoma cell lines. Biochem Biophys Res Commun. 2001;284(3):808–16.

    Article  CAS  PubMed  Google Scholar 

  141. Kashfi K, et al. Nitric oxide-donating nonsteroidal anti-inflammatory drugs inhibit the growth of various cultured human cancer cells: evidence of a tissue type-independent effect. J Pharmacol Exp Ther. 2002;303(3):1273–82.

    Article  CAS  PubMed  Google Scholar 

  142. Yeh RK, et al. NO-donating nonsteroidal antiinflammatory drugs (NSAIDs) inhibit colon cancer cell growth more potently than traditional NSAIDs: a general pharmacological property? Biochem Pharmacol. 2004;67(12):2197–205.

    Article  CAS  PubMed  Google Scholar 

  143. Hulsman N, et al. Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin. J Med Chem. 2007;50(10):2424–31.

    Article  CAS  PubMed  Google Scholar 

  144. Bak AW, et al. Cyclooxygenase-independent chemoprevention with an aspirin derivative in a rat model of colonic adenocarcinoma. Life Sci. 1998;62(23):367–73.

    Article  Google Scholar 

  145. Williams JL, et al. Growth inhibition of human colon cancer cells by nitric oxide (NO)-donating aspirin is associated with cyclooxygenase-2 induction and beta-catenin/T-cell factor signaling, nuclear factor-kappaB, and NO synthase 2 inhibition: implications for chemoprevention. Cancer Res. 2003;63(22):7613–8.

    CAS  PubMed  Google Scholar 

  146. Yoo D, et al. Glutathione-depleting pro-oxidant as a selective anticancer therapeutic agent. ACS Omega. 2019;4(6):10070–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shelton MD, Chock PB, Mieyal JJ. Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal. 2005;7(3–4):348–66.

    Article  CAS  PubMed  Google Scholar 

  148. Wadley AJ, Aldred S, Coles SJ. An unexplored role for Peroxiredoxin in exercise-induced redox signalling? Redox Biol. 2016;8:51–8.

    Article  CAS  PubMed  Google Scholar 

  149. Trzeciecka A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7(2):1717–31.

    Article  PubMed  Google Scholar 

  150. O'Leary PC, et al. Peroxiredoxin-1 protects estrogen receptor α from oxidative stress-induced suppression and is a protein biomarker of favorable prognosis in breast cancer. Breast Cancer Res. 2014;16(4):R79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Lehtonen ST, et al. Peroxiredoxins, a novel protein family in lung cancer. Int J Cancer. 2004;111(4):514–21.

    Article  CAS  PubMed  Google Scholar 

  152. Perkins A, et al. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci. 2015;40(8):435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang H, et al. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal. 2014;21(5):669–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang Y, et al. Total synthesis of griseusins and elucidation of the griseusin mechanism of action. Chem Sci. 2019;10(32):7641–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ye Q, et al. Frenolicin B targets peroxiredoxin 1 and glutaredoxin 3 to trigger ROS/4E-BP1-mediated antitumor effects. Cell Chem Biol. 2019;26(3):366–377.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu CX, et al. Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nat Chem Biol. 2012;8(5):486–93.

    Article  CAS  PubMed  Google Scholar 

  157. Hou JK, et al. Adenanthin targets peroxiredoxin I/II to kill hepatocellular carcinoma cells. Cell Death Dis. 2014;5(9):e1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. de la Vega MR, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34(1):21–43.

    Article  PubMed Central  CAS  Google Scholar 

  159. Cuadrado A, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295–317.

    Article  CAS  PubMed  Google Scholar 

  160. Best SA, et al. Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 2018;27(4):935–943.e4.

    Article  CAS  PubMed  Google Scholar 

  161. Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016;22(7):578–93.

    Article  CAS  PubMed  Google Scholar 

  162. Fox DB, et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat Metab. 2020;2(4):318–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kansanen E, et al. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1(1):45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bailly C. Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. Int Immunopharmacol. 2019;77:105967.

    Article  CAS  PubMed  Google Scholar 

  165. Jangra A, et al. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur J Pharmacol. 2016;791:51–61.

    Article  CAS  PubMed  Google Scholar 

  166. Kokura S, et al. The radical scavenger edaravone enhances the anti-tumor effects of CPT-11 in murine colon cancer by increasing apoptosis via inhibition of NF-kappaB. Cancer Lett. 2005;229(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  167. Tang Y, et al. Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy: a randomized controlled trial. J Neuro-Oncol. 2014;120(2):441–7.

    Article  CAS  Google Scholar 

  168. Li H, et al. Edaravone ameliorates experimental autoimmune thyroiditis in rats through HO-1-dependent STAT3/PI3K/Akt pathway. Am J Transl Res. 2018;10(7):2037–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Mengíbar JL, et al. Simultaneous onset of type 1 diabetes mellitus and silent thyroiditis under durvalumab treatment. Endocrinol Diabetes Metab Case Rep. 2019;2019(1):45.

    Google Scholar 

  170. Ferrari SM, et al. Thyroid disorders induced by checkpoint inhibitors. Rev Endocr Metab Disord. 2018;19(4):325–33.

    Article  PubMed  Google Scholar 

  171. Stehlin-Gaon C, et al. All-trans retinoic acid is a ligand for the orphan nuclear receptor RORβ. Nat Struct Mol Biol. 2003;10(10):820–5.

    Article  CAS  Google Scholar 

  172. Degos L, Wang ZY. All trans retinoic acid in acute promyelocytic leukemia. Oncogene. 2001;20(49):7140–5.

    Article  CAS  PubMed  Google Scholar 

  173. Chatterjee A, Chatterji U. All-trans retinoic acid ameliorates arsenic-induced oxidative stress and apoptosis in the rat uterus by modulating MAPK signaling proteins. J Cell Biochem. 2017;118(11):3796–809.

    Article  CAS  PubMed  Google Scholar 

  174. Khafaga AF, El-Sayed YS. All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn Schmiedeberg's Arch Pharmacol. 2018;391(1):59–70.

    Article  CAS  Google Scholar 

  175. Ramya D, et al. Chemoprotective effect of all-trans retinoic acid (ATRA) on oxidative stress and lung metastasis induced by benzo(a)pyrene. Immunopharmacol Immunotoxicol. 2012;34(2):317–25.

    Article  CAS  PubMed  Google Scholar 

  176. Carlström KE, et al. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun. 2019;10(1):3081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Nicolay JP, et al. Dimethyl fumarate restores apoptosis sensitivity and inhibits tumor growth and metastasis in CTCL by targeting NF-κB. Blood. 2016;128(6):805–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xie X, et al. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol. 2015;172(15):3929–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Saidu NEB, et al. Dimethyl fumarate, a two-edged drug: current status and future directions. Med Res Rev. 2019;39(5):1923–52.

    Article  PubMed  Google Scholar 

  180. Bennett Saidu NE, et al. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells. Oncotarget. 2018;9(10):9088–99.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Chau LY. Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci. 2015;22(1):22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - targeting HO-1 as an anti-tumor therapy. Vasc Pharmacol. 2015;74:11–22.

    Article  CAS  Google Scholar 

  183. Di Biase S, et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell. 2016;30(1):136–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Labbé RF, Vreman HJ, Stevenson DK. Zinc protoporphyrin: a metabolite with a mission. Clin Chem. 1999;45(12):2060–72.

    Article  PubMed  Google Scholar 

  185. Hjortsø MD, Andersen MH. The expression, function and targeting of haem oxygenase-1 in cancer. Curr Cancer Drug Targets. 2014;14(4):337–47.

    Article  PubMed  CAS  Google Scholar 

  186. Regehly M, et al. Water-soluble polymer conjugates of ZnPP for photodynamic tumor therapy. Bioconjug Chem. 2007;18(2):494–9.

    Article  CAS  PubMed  Google Scholar 

  187. Fang J, et al. Carbon monoxide, generated by heme oxygenase-1, mediates the enhanced permeability and retention effect in solid tumors. Cancer Sci. 2012;103(3):535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Harris IS, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  189. Maeda H, et al. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ. 2004;11(7):737–46.

    Article  CAS  PubMed  Google Scholar 

  190. Schikora M, et al. Activity of aminoferrocene-based prodrugs against prostate cancer. Bioorg Med Chem Lett. 2015;25(17):3447–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81821002, 81790251 and 81972665), National Key Research and Development Project (2020YFA0509400, 2020YFC2002705), and Guangdong Basic and Applied Basic Research Foundation (2019B030302012).

Competing Interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canhua Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, N., Huang, C. (2021). Drug Repurposing: An Avenue Toward Stress Medicine in Cancer Therapy. In: Huang, C., Zhang, Y. (eds) Oxidative Stress. Springer, Singapore. https://doi.org/10.1007/978-981-16-0522-2_10

Download citation

Publish with us

Policies and ethics