Skip to main content

Synthesis and Photocatalytic Properties of 2D Transition Metal Dichalcogenides

  • Chapter
  • First Online:
Emerging Trends in Nanotechnology

Abstract

Nanotechnology is the emerging technology of the twenty-first century. It deals with the synthesis and investigation of ultrafine materials and their use in technology for numerous applications. It is an interdisciplinary field that combines the principles of physics, chemistry, and engineering, such as structural analysis, electrical engineering, mechanical design, computer science and systems engineering. Two-dimensional (2D) materials are crystalline materials consisting of layered arranged atoms or molecules. In the last few years, 2D materials have been extensively explored for their unique 2D geometry, high surface-to-volume ratio, and nanoscale thickness. Two-dimensional transition metal dichalcogenide (2D-TMDCs) materials have the common formula MX2, where X = sulfur (S), selenium (Se) or tellurium (Te), and M belongs to the elements of group of 4, 5, and 6 of the periodic table. MX2 layers are covalently bound by the van der Waals force between the layers. The weak van der Waals bonds between the layers facilitate separation of the layers to form 2D materials. Many synthesis methods, like as CVD, hydrothermal, and CVT method, have been used to synthesize the 2D-TMDCs materials. Titanium disulfide (TiS2) is an important layered material among the TMDCs family. It crystallizes in the hexagonal structure similar to CdI2. It is a multi-layered compound with repeating subunits formed from a layer of Ti atoms and a layer of S. TiS2 has a band gap varying between 0.05 and 2.5 eV; the Bohr’s radius of approximately 6.43 nm and the lattice parameter constants a (a = b) and c of TiS2 are 3.40 A°, 5.96 A° respectively. The present chapter deals with the review of research work reported on 2D metal dichalcogenides with a special emphasis of TiS2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alagarasi A (2011) Introduction to Nanomaterials. http://www.nccr.iitm.ac.in/2011.pdf

  2. Kannan PK, Late DJ, Morgan H, Rout CS (2015) Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7:13293–13312

    Article  CAS  Google Scholar 

  3. Yang Wei, Gan L, Li H, Zhai T (2016) Two-dimensional layered nanomaterials for gas-sensing applications. Inorg Chem Front 3:433–451

    Article  CAS  Google Scholar 

  4. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nature Mater 6:652

    Article  CAS  Google Scholar 

  5. Varghese SS, Varghese SH, Swaminathan S, Singh KK, Mittal V (2015) Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3):651–687

    Article  CAS  Google Scholar 

  6. Li BL, Wang J, Zou HL, Garaj S, Lim CT, Xie J, Li NB, Leong DT (2016) Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv Funct Mater 26(39):7034–7056

    Article  CAS  Google Scholar 

  7. Yang S, Jiang C, Wei SH (2017) Gas sensing in 2D materials. Appl Phys Rev 4(2):021304

    Article  CAS  Google Scholar 

  8. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672

    Article  CAS  Google Scholar 

  9. Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2D transition-metal-dichalcogenide nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater 28:1917–1933

    Article  CAS  Google Scholar 

  10. Cao X, Tan C, Zhang X, Zhao W, Zhang H (2016) Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv Mater 28:6167–6196

    Article  CAS  Google Scholar 

  11. Dai Liming (2012) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42

    Article  CAS  Google Scholar 

  12. Wang X, Chen Y, Schmidt OG, Yan C (2016) Engineered nanomembranes for smart energy storage devices. Chem Soc Rev 45(5):1308–1330

    Article  CAS  Google Scholar 

  13. Mendoza-Sánchez B, Gogotsi Y (2016) Synthesis of two-dimensional materials for capacitive energy storage. Adv Mater 28:6104–6135

    Article  CAS  Google Scholar 

  14. Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45

    Article  CAS  Google Scholar 

  15. Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J-B, Zhu Hongwei (2017) Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev 4:021306

    Article  CAS  Google Scholar 

  16. Chen Y, Tan C, Zhang H, Wang L (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44(9):2681–2701

    Article  CAS  Google Scholar 

  17. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926

    Article  CAS  Google Scholar 

  18. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee SK, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768

    Article  CAS  Google Scholar 

  19. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photon 8:899

    Article  CAS  Google Scholar 

  20. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  21. Niu T, Li A (2015) From two-dimensional materials to heterostructures. Prog Surf Sci 90:21–45

    Article  CAS  Google Scholar 

  22. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  23. Lin Y-M, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P (2008) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426

    Article  CAS  Google Scholar 

  24. Lin Y-M, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Article  CAS  Google Scholar 

  25. Palacios T, Hsu A, Wang H (2010) Applications of graphene devices in RF communications. IEEE Commun Mag 48:122–128

    Article  Google Scholar 

  26. Wang H, Hsu A, Wu J, Kong J, Palacios T (2010) Graphene-based ambipolar RF mixers. IEEE Electr Dev Lett 31:906–908

    Article  CAS  Google Scholar 

  27. Happy H, Meng N, Fleurier R, Pichonat E, Vignaud D, Dambrine G (2011) Graphene nano ribbon field effect transistor for high frequency applications. In: 2011 41st European microwave conference, IEEE, pp 1138–1141

    Google Scholar 

  28. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  29. Zhang Y, Tan Y-W, Horst L (2005) Stormer, and Philip Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  30. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech 5:574

    Article  CAS  Google Scholar 

  31. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  CAS  Google Scholar 

  32. Xiao D, Liu G-B, Feng W, Xiaodong X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802

    Article  CAS  Google Scholar 

  33. Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206

    Article  CAS  Google Scholar 

  34. Lee C, Wei XD, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  35. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) ACS Nano 6:74

    Article  CAS  Google Scholar 

  36. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2016) Graphene photonics and optoelectronics. Nature Photon 4:611

    Google Scholar 

  37. Baby TT, Aravind SSJ, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuat B: Chem 145:71–77

    Article  CAS  Google Scholar 

  38. Lew Yan Voon LC, Sandberg E, Aga RS, Farajian AA (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97:163114

    Article  CAS  Google Scholar 

  39. Pulci O, Gori P, Marsili M, Garbuio V, Del Sole R, Bechstedt F (2012) Strong excitons in novel two-dimensional crystals: silicane and germanane. EPL (Europhys Lett) 98:37004

    Article  CAS  Google Scholar 

  40. Lassner E, Schubert W-D (1999) Properties, chemistry, technology of the element, alloys, and chemical compounds. Vienna University of Technology, Vienna, Austria, Kluwer, pp 124–125

    Google Scholar 

  41. Liang, Tao, Yu Cai, Hongzheng Chen, and Mingsheng Xu, Two-Dimensional Transition Metal Dichalcogenides: An Overview, In Two Dimensional Transition Metal Dichalcogenides, Springer. (2019) 1-27

    Google Scholar 

  42. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7:699

    Article  CAS  Google Scholar 

  43. Kumar A, Ahluwalia PK (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 85:186

    Article  CAS  Google Scholar 

  44. Chia X, Ambrosi A, Sofer Z, Luxa J, Pumera M (2015) Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9:5164–5179

    Article  CAS  Google Scholar 

  45. Das S, Prakash A, Salazar R, Appenzeller J (2014) Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8:1681–1689

    Article  CAS  Google Scholar 

  46. Lv R, Robinson JA, Schaak RE, Sun D, Sun Y, Mallouk TE, Terrones M (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56–64

    Article  CAS  Google Scholar 

  47. Pospischil Andreas, Furchi Marco M, Mueller Thomas (2014) Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9:257

    Article  CAS  Google Scholar 

  48. Rao CNR, Ramakrishna Matte HSS, Subrahmanyam KS, Maitra U (2012) Unusual magnetic properties of graphene and related materials. Chem Sci 3:45–52

    Article  CAS  Google Scholar 

  49. Ogawa S (1979) Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure. J Appl Phys 50:2308–2311

    Article  CAS  Google Scholar 

  50. Zhou Y, Yang C, Xiang X, Zu X (2013) Remarkable magnetism and ferromagnetic coupling in semi-sulfuretted transition-metal dichalcogenides. Phys Chem Chem Phys 15:14202–14209

    Article  CAS  Google Scholar 

  51. Pumera M, Sofer Z, Ambrosi A (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A 2:8981–8987

    Article  CAS  Google Scholar 

  52. Tributsch Helmut (1980) Photoelectrochemical behaviour of layer-type transition metal dichalcogenides. Faraday Disc Chem Soc 70:189–205

    Article  Google Scholar 

  53. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem 5:263

    Article  Google Scholar 

  54. Wang H, Feng H, Li J (2014) Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 10:2165–2181

    Article  CAS  Google Scholar 

  55. Huang K-J, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594

    Article  CAS  Google Scholar 

  56. Muller GA, Cook JB, Kim H-S, Tolbert SH, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917

    Article  CAS  Google Scholar 

  57. Ellmer K (2008) Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells. Phys Status Solidi 245:1745–1760

    Article  CAS  Google Scholar 

  58. Tributsch Helmut (1978) The MoSe2 electrochemical solar cell: anodic coupling of electron transfer to d→d photo-transitions in layer crystals. Berichte der Bunsengesellschaft fur physikalische Chemie 82:169–174

    Article  CAS  Google Scholar 

  59. Shanmugam M, Bansal T, Durcan CA, Bin Y (2012) Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl Phys Lett 100:153901

    Article  CAS  Google Scholar 

  60. Bhandavat R, David L, Singh G (2012) Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J Phys Chem Lett 3:1523–1530

    Article  CAS  Google Scholar 

  61. Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22:4522–4524

    Article  CAS  Google Scholar 

  62. Kong D, Cha JJ, Wang H, Lee HR, Cui Y (2013) First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci 6(12):3553–3558

    Article  CAS  Google Scholar 

  63. Chen TY, Chang YH, Hsu CL, Wei KH, Chiang CY, Li LJ (2013) Comparative study on MoS2 and WS2 for electrocatalytic water splitting. Int J Hydr Energy 38(28):12302–12309

    Article  CAS  Google Scholar 

  64. Han SW, Hwang YH, Kim SH, Yun WS, Lee JD, Park MG, Ryu S, Park JS, Yoo DH, Yoon SP, Hong SC (2013) Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys Rev Lett 110:247201

    Article  CAS  Google Scholar 

  65. Schweiger H, Raybaud P, Kresse G, Toulhoat H (2002) Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J Catal 207:76–87

    Article  CAS  Google Scholar 

  66. Sun M, Adjaye J, Nelson AE (2004) Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl Catal A: Gen 263:131–143

    Article  CAS  Google Scholar 

  67. Fontana Marcio, Deppe Tristan, Boyd Anthony K, Rinzan Mohamed, Liu Amy Y, Paranjape Makarand, Barbara Paola (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific reports. 3:1634

    Article  CAS  Google Scholar 

  68. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  CAS  Google Scholar 

  69. Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147

    Article  CAS  Google Scholar 

  70. Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184

    Article  CAS  Google Scholar 

  71. Cho MH, Ju J, Kim SJ, Jang H (2006) Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 260:855–860

    Article  CAS  Google Scholar 

  72. Kam KK, Parkinson BA (1982) Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys Chem 86:463–467

    Article  CAS  Google Scholar 

  73. Ho W, Yu JC, Lin J, Jiaguo Y, Li Puishan (2004) Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 20:5865–5869

    Article  CAS  Google Scholar 

  74. Gourmelon E, Lignier O, Hadouda H, Couturier G, Bernede JC, Tedd J, Pouzet J, Salardenne J (1997) MS2 (M= W, Mo) photosensitive thin films for solar cells. Sol Energy Mater Sol Cells 46:115–121

    Article  CAS  Google Scholar 

  75. Mak KF, Shan J, Heinz TF (2010) Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 104:176404

    Article  CAS  Google Scholar 

  76. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano letters. 10:1271–1275

    Article  CAS  Google Scholar 

  77. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  CAS  Google Scholar 

  78. Harper PG, Edmodson DR (1971) Electronic band structure of the layer-type crystal MoS2 (atomic model). Phys Status Solidi 44:59–69

    Article  CAS  Google Scholar 

  79. Sandoval SJ, Yang D, Frindt RF, Irwin JC (1991) Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B 44:3955

    Article  Google Scholar 

  80. Radisavljevic Branimir, Radenovic Aleksandra, Brivio Jacopo, Giacometti Valentina, Kis Andras (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147

    Article  CAS  Google Scholar 

  81. Cheng R, SJ Y, Chen YL, Weiss N, Cheng H-C, Hao W, Huang Y, Duan X (2014) Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nature Commun 5:5143

    Article  CAS  Google Scholar 

  82. Krasnozhon D, Lembke D, Nyffeler C, Leblebici Y, Kis A (2014) MoS2 transistors operating at gigahertz frequencies. Nano Lett 14:5905–5911

    Article  CAS  Google Scholar 

  83. Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electr Dev 58:3042–3047

    Article  CAS  Google Scholar 

  84. Perkins FK, Friedman AL, Cobas E, Campbell PM, Jernigan GG, Jonker BT (2013) Chemical vapor sensing with monolayer MoS2. Nano letters 13:668–673

    Article  CAS  Google Scholar 

  85. Lin J, Li H, Zhang H, Chen W (2013) Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett 102:203109

    Article  CAS  Google Scholar 

  86. Wang H, Lili Y, Lee Y-H, Shi Y, Hsu A, Chin ML, Li L-J, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680

    Article  CAS  Google Scholar 

  87. Radisavljevic B, Whitwick MB, Kis A (2011) Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5:9934–9938

    Article  CAS  Google Scholar 

  88. Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514

    Article  CAS  Google Scholar 

  89. Wieting TK Schluter. Phys Chem Mater Layered Struct

    Google Scholar 

  90. Wang H, Yuan H, Hong SS, Li Y, Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 44:2664–2680

    Article  CAS  Google Scholar 

  91. Rao CNR, Maitra U, Waghmare UV (2014) Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem Phys Lett 609(2014):172–183

    Article  CAS  Google Scholar 

  92. Terrones H, López-Urías F, Terrones M (2013) Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci Rep 3:1–7

    Article  CAS  Google Scholar 

  93. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335

    Article  CAS  Google Scholar 

  94. Imai H, Shimakawa Y, Kubo Y (2001) Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys Rev B. 64:241104

    Article  CAS  Google Scholar 

  95. Beaumale M, Barbier T, Bréard Y, Guelou G, Powell AV, Vaqueiro P, Guilmeau E (2014) Electron doping and phonon scattering in Ti1+xS2 thermoelectric compounds. Acta Mater 78:86–92

    Article  CAS  Google Scholar 

  96. Gatensby R, McEvoy N, Lee K, Hallam T, Berner NC, Rezvani E, Winters S, O’Brien M, Duesberg GS (2014) Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl Surf Sci 297:139–146

    Article  CAS  Google Scholar 

  97. Zhu Z, Cheng Y, Schwingenschlogl U (2013) Topological phase diagrams of bulk and monolayer TiS2−xTex. Phys Rev Lett 110:077202

    Article  CAS  Google Scholar 

  98. Zhang Y, Li Z, Jia H, Luo X, Xu J, Zhang X, Yu D (2006) TiS2 whisker growth by a simple vapor-deposition method. J Crystal Growth 293:124–127

    Article  CAS  Google Scholar 

  99. Laua KT, Edwards S, Diamond D (2004) nanostructured semiconductor oxides for the next generation of electronics and functional devices. Sens Actuat B 98:12–17

    CAS  Google Scholar 

  100. Chen J, Li SL, Tao ZL, Shen YT, Cui CX (2003) Titanium disulfide nanotubes as hydrogen-storage materials. J Am Chem Soc 125:5284–5285

    Article  CAS  Google Scholar 

  101. Let AL, Mainwaring DE, Rix CJ, Murugaraj P (2007) Thio sol–gel synthesis of titanium disulfide thin films and nanoparticles using titanium (IV) alkoxide precursors. J Phys Chem Solids 68:1428–1435

    Article  CAS  Google Scholar 

  102. Tao Z-L, Xu L-N, Gou X-L, Chen J, Yuan H-T (2004) TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem Commun 18:2080–2081

    Article  CAS  Google Scholar 

  103. Park KH, Choi J, Kim HJ, Oh D-H, Ahn JR, Son SU (2008) Unstable single-layered colloidal TiS2 nanodisks. Small 4:945–950

    Article  CAS  Google Scholar 

  104. Margolin A, Popovitz-Biro R, Albu-Yaron A, Rapoport L, Tenne R (2005) Inorganic fullerene-like nanoparticles of TiS2. Chem Phys Lett 411(1–3):162–166

    Article  CAS  Google Scholar 

  105. Soltani N, Saion E, Hussein MZ, Erfani M, Abedini A, Bahmanrokh G, Navasery M, Vaziri P (2012) Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int J Molec Sci 13(10):12242–12258

    Article  CAS  Google Scholar 

  106. Qin YL, Zhao WW, Sun Z, Liu XY, Shi GL, Liu ZY, Ni DR, Ma ZY (2018) Photocatalytic and adsorption property of ZnS–TiO2/RGO ternary composites for methylene blue degradation. Adsorpt Sci Technol 0263617418810932

    Google Scholar 

  107. Chaudhary D, Khare N, Vankar VD (2016) MWCNT/CdS hybrid nanocomposite for enhanced photocatalytic activity. In: AIP conference proceedings vol 173, pp 050106

    Google Scholar 

  108. Ashraf W, Fatima T, Srivastava K, Khanuja M (2019) Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects. Appl Nanosci 1–15

    Google Scholar 

  109. Han S, Liu K, Linfeng H, Teng F, Pingping Y, Zhu Y (2017) Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Scientif Rep 7:43599

    Article  Google Scholar 

  110. Raghu S, Ahmed Basha C (2007) Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. J Hazard Mater 149:324–330

    Article  CAS  Google Scholar 

  111. Kim TH, Lee Y, Yang J, Lee B, Park C, Kim S (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 15(168):287–293

    Article  CAS  Google Scholar 

  112. Daneshvar N, Oladegaragoze A, Djafarzadeh N (2006) Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. J Hazard Mater 129:116–122

    Article  CAS  Google Scholar 

  113. Sharma R, Singh S, Verma A, Khanuja M (2016) Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. J Photochem Photobiol, B 162:266–272

    Article  CAS  Google Scholar 

  114. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  115. Sharma R, Khanuja M, Islam SS, Singhal U, Varma A (2017) Aspect-ratio-dependent photoinduced antimicrobial and photocatalytic organic pollutant degradation efficiency of ZnO nanorods. Res Chem Intermed 43(10):5345–5364

    Article  CAS  Google Scholar 

  116. Singh S, Pendurthi R, Khanuja M, Islam SS, Rajput S, Shivaprasad SM (2017) Copper-doped modified ZnO nanorods to tailor its light assisted charge transfer reactions exploited for photo-electrochemical and photo-catalytic application in environmental remediation. Appl Phys A 123:184

    Article  CAS  Google Scholar 

  117. Singh S, Sharma R, Khanuja M (2018) A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X= Cl, Br, I, F) nanostructures. Korean J Chem Eng 35:1955–1968

    Article  CAS  Google Scholar 

  118. Bhuyan T, Khanuja M, Sharma R, Patel S, Reddy MR, Anand S, Varma A (2015) A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J Nanopart Res 17:288

    Article  CAS  Google Scholar 

  119. Singh Sonal (2018) Aakansha Ruhela, Sanju Rani, Manika Khanuja, and Rishabh Sharma, Concentration specific and tunable photoresponse of bismuth vanadate functionalized hexagonal ZnO nanocrystals based photoanodes for photoelectrochemical application. Solid State Sci 76:48–56

    Article  CAS  Google Scholar 

  120. Sherine OO, Gerald JM (2004) Nanostructured materials for environmental remediation of organic contaminants in water. J Environ Sci Health, Part A—Toxic/Hazardous Subst Environ Eng 39: 2549–2582

    Google Scholar 

  121. Khin MM, Nair AS, Babu VJ (2012) A review on nanomaterials for environmental remediation. Energy & Environmental Science, Science for Environment Policy

    Book  Google Scholar 

  122. Grover R, Cessna AJ (eds) (1991) Environmental chemistry of herbicides, vol II. CRC Press, Boca Raton, Florida

    Google Scholar 

  123. Umar A, Rahman MM, Kim SH, Hahn YB (2008) Zinc oxide nanonail based chemical sensor for hydrazine detection. Chem Commun (Camb): 166–168

    Google Scholar 

  124. Fox MA (1991) Photoinduced electron transfer in arranged media. Topic in current chemistry 159:67–101

    Article  CAS  Google Scholar 

  125. Rothenberger G, Moser J, Gratzel M, Serpone N, Sharma DK (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059

    Article  CAS  Google Scholar 

  126. Tian R, Wan C, Wang Y, Wei Q, Ishida T, Yamamoto A, Tsuruta A, Shin W, Li S (2017) A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J Mater Chem A 5:564–570

    Article  CAS  Google Scholar 

  127. Okamoto K, Anno H (2018) In-plane thermoelectric properties of nano-TiS2/CNT/PEDOT–PSS Hybrid films. J Phys: Conf Ser 1052:012130

    Google Scholar 

  128. Zhang J, Ye Y, Li C, Yang J, Zhao H, Xu X, Huang R, Pan L, Lu C (2017) Wang Y Thermoelectric properties of TiS2 xPbSnS3 nanocomposites. J Alloys Comp 696:1342–1348

    Article  CAS  Google Scholar 

  129. Huckaba AJ, Saba G, Maryline R, Cristina R-C, Mohammadian N, Grancini G, Lee Y et al (2017) Low-cost TiS2 as hole-transport material for perovskite solar cells. Small Methods 1:1700250

    Google Scholar 

  130. Zhou Y, Wan J, Li Q, Chen L, Zhou J, Wang H, He D, Li X, Yang Y, Huang H (2017) Chemical welding on semimetallic TiS2 nanosheets for high-performance flexible n-type thermoelectric films. ACS Appl Mater Interf 9(49):42430–42437

    Article  CAS  Google Scholar 

  131. Ramakrishnan A, Raman S, Chen LC, Chen KH (2018) Enhancement in thermoelectric properties of TiS2 by Sn addition. J Electr Mater 47(6):3091–3098

    Article  CAS  Google Scholar 

  132. Wang L, Zhang Z, Geng L, Yuan T, Liu Y, Guo J, Fang L, Qiu J, Wang S (2018) Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ Sci 11(5):1307–1317

    Article  CAS  Google Scholar 

  133. Ye Y, Wang Y, Shen Y, Wang Y, Pan L, Tu R, Lu C, Huang R, Koumoto K (2016) Enhanced thermoelectric performance of xMoS2–TiS2 nanocomposites. J Alloys Comp 5(666):346–351

    Article  CAS  Google Scholar 

  134. Sun X, Bonnick P, Nazar LF (2016) Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett 1:297–301

    Article  CAS  Google Scholar 

  135. Li R, Dui J, Yunlong F, Yanling X, Zhou S (2016) Ultrahigh power factor and enhanced thermoelectric performance of individual Te/TiS2 nanocables. Nanotechnology 27:415704

    Article  CAS  Google Scholar 

  136. Oh DY, Choi YE, Kim DH, Lee YG, Kim BS, Park J, Sohn H, Jung YS (2016) All-solid-state lithium-ion batteries with TiS 2 nanosheets and sulphide solid electrolytes. Journal of Materials Chemistry A. 4(26):10329–10335

    Article  CAS  Google Scholar 

  137. Hazarika SJ, Mohanta D, Tripathi A, Kanjilal D (2016) Effect of ion irradiation on nanoscale TiS2 systems with suppressed Titania phase. J Phys Conf Ser 765:012007

    Article  CAS  Google Scholar 

  138. Wang Y, Wen J, Fan Z, Bao N, Huang R, Rong T, Wang Y (2015) Energy-filtering-induced high power factor in PbS-nanoparticles-embedded TiS2. AIP Adv 5:047126

    Article  CAS  Google Scholar 

  139. Tan M, Wang Z, Peng J, Jin X (2015) Facile synthesis of large and thin TiS2 sheets via a gas/molten salt interface reaction. Journal of the American Ceramic Society. 98(5):1423–1428

    Article  CAS  Google Scholar 

  140. Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder GJ, Yang R (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Mater 14(6):622–627

    Article  CAS  Google Scholar 

  141. Barawi M, Flores E, Ponthieu M, Ares JR, Cuevas F, Leardini F, Ferrer I, Sánchez C (2015) Hydrogen storage by titanium based sulfides: nanoribbons (TiS3) and nanoplates (TiS2). J. Electr. Eng. 3:24–29

    Google Scholar 

  142. Daou R, Takahashi H, Hébert S, Beaumale M, Guilmeau E, Maignan A (2015) Intrinsic effects of substitution and intercalation on thermal transport in two-dimensional TiS2 single crystals. J Appl Phys 117:165101

    Article  CAS  Google Scholar 

  143. Bourges C, Barbier T, Guélou G, Vaqueiro P, Powell AV, Lebedev OI, Barrier N, Kinemuchi Y, Guilmeau E (2016) Thermoelectric properties of TiS2 mechanically alloyed compounds. J Eur Ceram Soc 36:1183–1189

    Article  CAS  Google Scholar 

  144. Beaumale M, Barbier T, Bréard Y, Raveau B, Kinemuchi Y, Funahashi R, Guilmeau E (2014) Mass fluctuation effect in Ti1−xNbxS2 bulk compounds. J Electr Mater 43:1590–1596

    Article  CAS  Google Scholar 

  145. Gupta U, Rao BG, Maitra U, Prasad BE, Rao CN (2014) Visible-light-induced generation of H2 by nanocomposites of few-layer TiS2 and TaS2 with CdS nanoparticles. Chem Asian J 9(5):1311–1315

    Article  CAS  Google Scholar 

  146. Yin G, Zhao H, Feng J, Sun J, Yan J, Liu Z, Lin S, Liu SF (2018) Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. J Mater Chem A 6(19):9132–9138

    Article  CAS  Google Scholar 

  147. Kartick B, Srivastava SK, Mahanty S (2013) TiS2–MWCNT hybrid as high performance anode in lithium-ion battery. J Nanopart Res 15:1950

    Article  Google Scholar 

  148. Lin C, Zhu X, Feng J, Wu C, Hu S, Peng J, Guo Y, Peng L, Zhao J, Huang J, Yang J (2013) Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc 135(13):5144–5151

    Article  CAS  Google Scholar 

  149. Ryu H-S, Kim J-S, Park J-S, Park J-W, Kim K-W, Ahn J-H, Nam T-H, Wang G, Ahn H-J (2012) Electrochemical properties and discharge mechanism of Na/TiS2 cells with liquid electrolyte at room temperature. J Electrochem Soc 160:338

    Article  CAS  Google Scholar 

  150. Plashnitsa VV, Vietmeyer F, Petchsang N, Tongying P, Kosel TH, Kuno M (2012) Synthetic strategy and structural and optical characterization of thin highly crystalline titanium disulfide nanosheets. J Phys Chem Lett 3(11):1554–1558

    Article  CAS  Google Scholar 

  151. Guilmeau E, Breard Y, Maignan A (2011) Transport and thermoelectric properties in copper intercalated TiS2 chalcogenide. Appl Phys Lett 99:052107

    Article  CAS  Google Scholar 

  152. Prabakar S, Collins S, Northover B, Tilley RD (2011) Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide. Chem Commun 47(1):439–441

    Article  CAS  Google Scholar 

  153. He HY (2010) Solvothermal synthesis and photocatalytic activity of S-doped TiO2 and TiS2 powders. Res Chem Intermed 36:155–161

    Article  CAS  Google Scholar 

  154. Zhang J, Qin XY, Xin HX, Li D, Song CJ (2011) Thermoelectric properties of Co-doped TiS2. J Electron Mater 40:980–986

    Article  CAS  Google Scholar 

  155. Ma J, Jin H, Liu X, Fleet ME, Li J, Cao X, Feng S (2008) Selective synthesis and formation mechanism of TiS2 dendritic crystals. Cryst Growth Des 8:4460–4464

    Article  CAS  Google Scholar 

  156. Alexandru L, David M, Colin RIX, Pandiyan M (2007) Synthesis and optical properties of TiS2 nanoclusters. Rev Roum Chim 52:235–241

    Google Scholar 

  157. Li D, Qin XY, Gu YJ (2006) The effects of bismuth intercalation on structure and thermal conductivity of TiS2. Mater Res Bull 41:282–290

    Article  CAS  Google Scholar 

  158. Li D, Qin XY, Zhang J, Li HJ (2006) Enhanced thermoelectric properties of neodymium intercalated compounds NdxTiS2. Phys Lett A 348:379–385

    Article  CAS  Google Scholar 

  159. Liu J, Yang HS, Gao HX, Li D, Sun CH, Chai YS, Chen XD, Qin XY, Cao LZ (2006) Study on the thermopower of Bi intercalated TiS2: evidence of thin, lens-shaped Fermi pockets. Phys Lett A 360(2):344–347

    Article  CAS  Google Scholar 

  160. Li D, Qin XY, Zhang J, Wang L, Li HJ (2005) Enhanced thermoelectric properties of bismuth intercalated compounds BixTiS2. Solid State Commun 135:237–240

    Article  CAS  Google Scholar 

  161. Li D, Qin XY, Zhang J (2006) Improved thermoelectric properties of gadolinium intercalated compounds GdxTiS2 at the temperatures from 5 to 310 K. J Mater Res 21:480–483

    Article  CAS  Google Scholar 

  162. Li D, Qin XY, Liu J, Yang HS (2004) Electrical resistivity and thermopower of intercalation compounds BixTiS2. Phys Lett A 328:493–499

    Article  CAS  Google Scholar 

  163. Abbott EE, Kolis JW, Lowhorn ND, Sams W, Tritt TM (2003) Thermoelectric properties of TiS2 type materials. In: MRS online proceedings library archive, p 793

    Google Scholar 

  164. Carmalt CJ, Parkin IP, Peters ES (2003) Atmospheric pressure chemical vapor deposition of TiS2 thin films on glass. Polyhedron 22:1263–1269

    Article  CAS  Google Scholar 

  165. Wang M, Peng Z, Qian J, Li H, Zhao Z, Fu X (2018) Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers@ MoSe2 nanoplates core-shell composite. J Hazard Mater 347:403–411

    Article  CAS  Google Scholar 

  166. Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) Bulk synthesis of inorganic fullerene-like MS2 (M= Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118:5362–5367

    Article  CAS  Google Scholar 

  167. Sekine T, Nakashizu T, Toyoda K, Uchinokura K, Matsuura E (1980) Raman scattering in layered compound 2H-WS2. Solid State Commun 35:371–373

    Article  CAS  Google Scholar 

  168. Wu Y-C, Liu Z-M, Chen J-T, Cai X-J, Na P (2017) Hydrothermal fabrication of hyacinth flower-like WS2 nanorods and their photocatalytic properties. Mater Lett 189:282–285

    Article  CAS  Google Scholar 

  169. Man X, Lixin Y, Sun J, Li Songchu (2016) The synthesis and the photocatalytic degradation property of the nano-MoS2. Funct Mater Lett 9:1650065

    Article  CAS  Google Scholar 

  170. Yang F, Zhang Z, Wang Y, Xu M, Zhao W, Yan J, Chen C (2017) Facile synthesis of nano-MoS2 and its visible light photocatalytic property. Mater Res Bull 87:119–122

    Article  CAS  Google Scholar 

  171. Wang H, Wen F, Li X, Gan X, Yang Y, Chen P, Zhang Y (2016) Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr (VI) removal. Separ Purific Technol 170:190–198

    Article  CAS  Google Scholar 

  172. Liu P, Liu Y, Ye W, Ma J, Gao D (2016) Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27:225403

    Article  CAS  Google Scholar 

  173. Vattikuti SP, Byon C, Reddy CV (2016) Preparation and improved photocatalytic activity of mesoporous WS2 using combined hydrothermal-evaporation induced self-assembly method. Mater Res Bull 75:193–203

    Article  CAS  Google Scholar 

  174. Tahir MB, Sohaib M, Rafique M, Sagir M, Rehman NU, Muhammad S Visible light responsive photocatalytic hydrogen evolution using MoS2 incorporated ZnO

    Google Scholar 

  175. Xu A, Tu W, Shen S, Lin Z, Gao N, Zhong W (2020) BiVO4@ MoS2 core-shell heterojunction with improved photocatalytic activity for discoloration of rhodamine B. Appl Surf Sci 13:146949

    Article  CAS  Google Scholar 

  176. Jiang N, Yi D, Ji P, Liu S, He B, Junnan Q, Wang J, Sun X, Liu Y, Li H (2020) Enhanced photocatalytic activity of novel TiO2/Ag/MoS2/Ag nanocomposites for water-treatment. Ceram Int 46(4):4889–4896

    Article  CAS  Google Scholar 

  177. Yin S, Chen R, Ji M, Jiang Q, Li K, Chen Z, Xia J, Li H (2020) Construction of ultrathin MoS2/Bi5O7I composites: effective charge separation and increased photocatalytic activity. J Colloid Interf Sci 560:475–484

    Article  CAS  Google Scholar 

  178. Ashraf W, Bansal S, Singh V, Barman S, Khanuja M (2020) BiOCl/WS2 hybrid nanosheet (2D/2D) heterojunctions for visible-light-driven photocatalytic degradation of organic/inorganic water pollutants. RSC Adv 10(42):25073–25088

    Article  CAS  Google Scholar 

  179. Bai X, Yanyan D, Xiaoyun H, He Y, He C, Liu E, Fan J (2018) Synergy removal of Cr (VI) and organic pollutants over RP-MoS2/rGO photocatalyst. Appl Catal B 239:204–213

    Article  CAS  Google Scholar 

  180. Lejbini MB, Sangpour P (2019) Hydrothermal synthesis of α-Fe2O3-decorated MoS2 nanosheets with enhanced photocatalytic activity. Optik 177:112–117

    Article  CAS  Google Scholar 

  181. Chai B, Mengqiu X, Yan J, Ren Z (2018) Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl Surf Sci 430:523–530

    Article  CAS  Google Scholar 

  182. Huang S, Chen C, Tsai H, Shaya J, Chungshin L (2018) Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Sep Purif Technol 197:147–155

    Article  CAS  Google Scholar 

  183. Khan MI, Hasan MS, Bhatti KA, Rizvi H, Wahab A, Rehman SU, Afzal MJ, Nazneen A, Nazir A, Iqbal M (2020) Effect of Ni doping on the structural, optical and photocatalytic activity of MoS2, prepared by hydrothermal method. Mater Res Expr 7(1):015061

    Article  CAS  Google Scholar 

  184. Rahimi K, Moradi M, Dehghan R, Yazdani Ahmad (2019) Enhancement of sunlight-induced photocatalytic activity of ZnO nanorods by few-layer MoS2 nanosheets. Mater Lett 234:134–137

    Article  CAS  Google Scholar 

  185. Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic–organic nanohybrid of MoS 2-PANI for advanced photocatalytic application. Int Nano Lett 9(2):127–139

    Article  CAS  Google Scholar 

  186. Siddiqui I, Mittal H, Kohli VK, Gautam P, Ali M, Khanuja M (2018) Hydrothermally synthesized micron sized, broom-shaped MoSe2 nanostructures for superior photocatalytic water purification. Mater Res Expr 5(12):125020

    Article  CAS  Google Scholar 

  187. Elangovan E, Sivakumar T, Brindha A, Thamaraiselvi K, Sakthivel K, Kathiravan K, Aishwarya S (2019) Visible active N-doped TiO2/WS2 heterojunction nano rods: synthesis, characterization and photocatalytic activity. J Nanosci Nanotechnol 19(8):4429–4437

    Article  CAS  Google Scholar 

  188. Koyyada G, Vattikuti SVP, Shome S, Shim J, Chitturi V, Jung JH (2019) Enhanced solar light-driven photocatalytic degradation of pollutants and hydrogen evolution over exfoliated hexagonal WS2 platelets. Mater Res Bull 109:246–254

    Article  CAS  Google Scholar 

  189. Sharma M, Mohapatra PK, Bahadur D (2017) Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite. Front Mater Sci 11(4):366–374

    Article  CAS  Google Scholar 

  190. Zhang X, Qiu F, Rong X, Jicheng X, Rong J, Zhang T (2018) Zinc oxide/graphene-like tungsten disulphide nanosheet photocatalysts: Synthesis and enhanced photocatalytic activity under visible-light irradiation. Can J Chem Eng 96(5):1053–1061

    Article  CAS  Google Scholar 

  191. Vincent T, Guibal E (2003) Chitosan-supported palladium catalyst 3. Influence of experimental parameters on nitrophenol degradation. Langmuir 19:8475–8483

    Article  CAS  Google Scholar 

  192. Parvaz M, Salah NA, Khan ZH (2018) Effect of ZnO nanoparticles doping on the optical properties of TiS2 discs. Optik 171:183–189

    Article  CAS  Google Scholar 

  193. Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7:70

    Article  CAS  Google Scholar 

  194. Luo W, Lorger S, Wang B, Bommier C, Ji X (2014) Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures. Chem Commun 50:5435–5437

    Article  CAS  Google Scholar 

  195. Jeong S, Yoo D, Jang J-t, Kim M, Cheon J (2012) Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J Am Chem Soc 134:18233–18236

    Article  CAS  Google Scholar 

  196. Let AL, Mainwaring DE, Rix C, Murugaraj P (2008) Thio sol–gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors. J Non-Cryst Solids 354:1801–1807

    Article  CAS  Google Scholar 

  197. Yu J-G, Yu H-, Cheng B, Zhao X-J, Yu JC, Ho W-K (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879

    Article  CAS  Google Scholar 

  198. Wei C, Chen Xi, Li D, Huimin S, He H, Dai J-F (2016) Bound exciton and free exciton states in GaSe thin slab. Scient Rep 6:33890

    Article  CAS  Google Scholar 

  199. Xie J, Lü X, Chen M, Zhao G, Song Y, Lu S (2008) The synthesis, characterization and photocatalytic activity of V (V), Pb (II), Ag (I) and Co (II)-doped Bi2O3. Dyes Pigm 77:43–47

    Article  CAS  Google Scholar 

  200. Mittal H, Kumar A, Khanuja M (2019) In-situ oxidative polymerization of aniline on hydrothermally synthesized MoSe2 for enhanced photocatalytic degradation of organic dyes. J Saudi Chem Soc

    Google Scholar 

  201. Zhang J, Kang W, Jiang M, You Y, Cao Y, Ng T-W, Denis YW, Lee C-S, Xu J (2017) Conversion of 1T-MoSe2 to 2H-MoS2xSe2−2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 9:1484–1490

    Article  CAS  Google Scholar 

  202. Ye Z, Kong L, Chen F, Chen Z, Lin Y, Liu C (2018) A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes. Optik 164:345–354

    Article  CAS  Google Scholar 

  203. Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MR, Aziz FA, Rafique RF, Selvi RT (2018) Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett 13:229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishan H. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parvaz, M., Abbas, H., Khan, Z.H. (2021). Synthesis and Photocatalytic Properties of 2D Transition Metal Dichalcogenides. In: Khan, Z.H. (eds) Emerging Trends in Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9904-0_1

Download citation

Publish with us

Policies and ethics