Skip to main content

Recent Trends in the Surface Modification of Natural Fibers for the Preparation of Green Biocomposite

  • Chapter
  • First Online:
Green Composites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Academicians and researchers are exploring new opportunities in the field of natural fiber-based green composites because of excellent properties of natural fibers like lightweight, easy availability, sustainability and environment-friendly tendency. Cost effectiveness, diversity and renewability of natural fibers are also added advantages which attract scientific community and industrialists. Being lignocellulosic, natural fibers are hydrophilic in nature, and their poor adhesion with hydrophobic polymer matrix is one of the major issues which can create hurdles for the commercialization of their finished composites. Extensive research on different treatment methodologies has been done on these natural fibers and their reinforced polymer composites to get the improved properties. Various chemical, physical and biochemical methods have been suggested to get the excellent finished products. A detailed compilation of the existing treatment methodologies including traditional methods like alkali treatment, silanization, graft copolymerization and along with less common ways like enzymatic, radiation, ionic liquid treatment have been discussed. Emphasis has been given to add recent findings in the field of surface treatment of natural fibers to get the optimized green composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86(4):1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034

    Article  CAS  Google Scholar 

  2. Adekunle KF (2015) Surface treatments of natural fibres—a review: part 1. Open J Polym Chem 05(03):41–46. https://doi.org/10.4236/ojpchem.2015.53005

    Article  CAS  Google Scholar 

  3. Adeniyi AG, Ighalo JO, Onifade DV (2019) Banana and plantain fiber-reinforced polymer composites. J Polym Eng 39(7):597–611. https://doi.org/10.1515/polyeng-2019-0085

    Article  CAS  Google Scholar 

  4. Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Compos B Eng 176(August):107305. https://doi.org/10.1016/j.compositesb.2019.107305

    Article  CAS  Google Scholar 

  5. Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2018) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text 47(8):2153–2183. https://doi.org/10.1177/1528083716654468

    Article  CAS  Google Scholar 

  6. Arrakhiz FZ, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des 35:318–322. https://doi.org/10.1016/j.matdes.2011.09.023

    Article  CAS  Google Scholar 

  7. Barman A, Shrivastava NK, Khatua BB, Ray BC (2015) Effect of filler content on the properties of polypropylene/Saccharum spontaneum green composite. Polym-Plast Technol Eng 54:1231–1240. https://doi.org/10.1080/03602559.2014.1003233

  8. Barman A, Shrivastava NK, Khatua BB, Ray BC (2015) Green composites based on high-density polyethylene and Saccharum spontaneum: effect of filler content on morphology. Therm Mech Prop. https://doi.org/10.1002/pc.23126

    Article  Google Scholar 

  9. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75. https://doi.org/10.1163/1568554053542188

    Article  CAS  Google Scholar 

  10. Bessa J, Matos J, Mota C, Cunha F, Araújo I, Silva L, Pinho E, Fangueiro R (2017) Influence of surface treatments on the mechanical properties of fibre reinforced thermoplastic composites. Procedia Eng200:465–471. https://doi.org/10.1016/j.proeng.2017.07.065

  11. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Exp Polym Lett 2(6):413–422. https://doi.org/10.3144/expresspolymlett.2008.50

    Article  CAS  Google Scholar 

  12. Czaplicki Z, Ruszkowski K (2014) Optimization of scouring alpaca wool by ultrasonic technique. J Nat Fibers 11(2):169–183. https://doi.org/10.1080/15440478.2013.864577

    Article  Google Scholar 

  13. Dalei G, Das S, Jena SR, Nayak J, Samanta L, Das SP (2019) Surface modification of cellulose/polyvinyl alcohol biocomposites by non-thermal argon plasma: applications towards biological relevance. Cellulose 26(4):2437–2451. https://doi.org/10.1007/s10570-019-02243-0

    Article  CAS  Google Scholar 

  14. De Prez J, Van Vuure AW, Ivens J, Aerts G, Van de Voorde I (2019) Effect of enzymatic treatment of flax on fineness of fibers and mechanical performance of composites. Compos A Appl Sci Manuf 123(January):190–199. https://doi.org/10.1016/j.compositesa.2019.05.007

    Article  CAS  Google Scholar 

  15. De Prez J, Van Vuure AW, Ivens J, Aerts G, Van de Voorde I (2020) Flax treatment with strategic enzyme combinations: effect on fiber fineness and mechanical properties of composites. J Reinf Plast Compos 39(5–6):231–245. https://doi.org/10.1177/0731684419884645

    Article  CAS  Google Scholar 

  16. Devnani GL, Sinha S (2018) African Teff Straw as a potential reinforcement in polymer composites for light-weight applications: mechanical, thermal, physical, and chemical characterization before and after alkali treatment. J Nat Fibers 1–15. https://doi.org/10.1080/15440478.2018.1546640

  17. Devnani GL, Sinha S (2019) Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos B 166(February):436–445. https://doi.org/10.1016/j.compositesb.2019.02.042

    Article  CAS  Google Scholar 

  18. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  19. Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos B 85:150–160. https://doi.org/10.1016/j.compositesb.2015.09.028

    Article  CAS  Google Scholar 

  20. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3–4):259–320. https://doi.org/10.1080/15583724.2012.705409

    Article  CAS  Google Scholar 

  21. Hamidon MH, Sultan MTH, Ariffin AH, Shah AUM (2019) Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. J Mater Res Technol 8(3):3327–3337. https://doi.org/10.1016/j.jmrt.2019.04.012

    Article  CAS  Google Scholar 

  22. Huerta-Cardoso O, Durazo-Cardenas I, Longhurst P, Simms NJ, Encinas-Oropesa A (2020) Fabrication of agave tequilana bagasse/PLA composite and preliminary mechanical properties assessment. Ind Crops Prod 152(June 2019):112523. https://doi.org/10.1016/j.indcrop.2020.112523

  23. Jafari M (2007) The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw. Pak J Biol Sci 10(15):2460–2464

    Google Scholar 

  24. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos. https://doi.org/10.1002/pc.20461

    Article  Google Scholar 

  25. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  CAS  Google Scholar 

  26. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 1253–1272. https://doi.org/10.1002/pen.21328

  27. Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1(3):97–112. https://doi.org/10.1016/j.jece.2013.04.009

    Article  CAS  Google Scholar 

  28. Kamath SS, Sampathkumar D, Bennehalli B (2017) A review on natural areca fibre reinforced polymer composite materials. Ciencia E Tecnol Dos Mater 29(3):106–128. https://doi.org/10.1016/j.ctmat.2017.10.001

    Article  Google Scholar 

  29. Khoshnava SM, Rostami R, Ismai M, Valipour A (2014) The using fungi treatment as green and environmentally process for surface modification of natural fibres. Appl Mech Mater 554(October 2015):116–122. https://doi.org/10.4028/www.scientific.net/AMM.554.116

  30. Koronis G, Silva A, Fontul M (2013) Composites: part B green composites: a review of adequate materials for automotive applications. Compos B 44(1):120–127. https://doi.org/10.1016/j.compositesb.2012.07.004

    Article  CAS  Google Scholar 

  31. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos: Part B 42:856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

  32. Le Moigne N, Sonnier R, El Hage R, Rouif S (2017) Radiation-induced modifications in natural fibres and their biocomposites: opportunities for controlled physico-chemical modification pathways? Ind Crops Prod 109(August):199–213. https://doi.org/10.1016/j.indcrop.2017.08.027

    Article  CAS  Google Scholar 

  33. Lei B, Feng Y (2020) Sustainable thermoplastic bio-based materials from sisal fibers. J Clean Prod 265:121631. https://doi.org/10.1016/j.jclepro.2020.121631

    Article  CAS  Google Scholar 

  34. Li W, Meng L, Ma R (2016) Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylene fiber reinforced natural rubber composites. Polym Testing 55:10–16. https://doi.org/10.1016/j.polymertesting.2016.08.006

    Article  CAS  Google Scholar 

  35. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  36. Lorenzo-Hernando A, Martín-Juárez J, Bolado-Rodríguez S (2018) Study of steam explosion pretreatment and preservation methods of commercial cellulose. Carbohyd Polym 191(February):234–241. https://doi.org/10.1016/j.carbpol.2018.03.021

    Article  CAS  Google Scholar 

  37. Madhu P, Sanjay MR, Jawaid M, Siengchin S, Khan A, Pruncu CI (2020) A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: physico-chemical, thermal, mechanical and morphological properties. Polym Testing 85:106437. https://doi.org/10.1016/j.polymertesting.2020.106437

    Article  CAS  Google Scholar 

  38. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Saravanakumar SS, Yogesha B (2019) A review on synthesis and characterization of commercially available natural fibers: Part II. J Nat Fibers 16(1):25–36. https://doi.org/10.1080/15440478.2017.1379045

    Article  Google Scholar 

  39. Mahajan S (2016) Preface: international conference on recent trends in physics (ICRTP 2016). J Phys: Conf Ser 755(1). https://doi.org/10.1088/1742-6596/755/1/011001

  40. Manna S, Saha P, Chowdhury S, Thomas S (2017) Alkali treatment to improve physical, mechanical and chemical properties of lignocellulosic natural fibers for use in various applications. Lignocellul Prod Ind Appl 47–63. https://doi.org/10.1002/9781119323686.ch3

  41. La Mantia FP, Morreale M (2011) Composites: part A green composites: a brief review. Compos A 42(6):579–588. https://doi.org/10.1016/j.compositesa.2011.01.017

    Article  CAS  Google Scholar 

  42. Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Def Sci J 64(3):244–261. https://doi.org/10.14429/dsj.64.7323

  43. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343. https://doi.org/10.1163/156855401753255422

    Article  CAS  Google Scholar 

  44. Mohd Izwan S, Sapuan SM, Zuhri MYM, Mohamed AR (2020) Effects of benzoyl treatment on NaOH treated sugar palm fiber: tensile, thermal, and morphological properties. J Mater Res Technol 9(3):5805–5814. https://doi.org/10.1016/j.jmrt.2020.03.105

    Article  CAS  Google Scholar 

  45. Muhammad A, Rahman MR, Hamdan S, Sanaullah K (2019) Recent developments in bamboo fiber-based composites: a review. Polym Bull 76(5):2655–2682. https://doi.org/10.1007/s00289-018-2493-9

    Article  CAS  Google Scholar 

  46. Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review. J Thermoplast Compos Mater 22(2):135–162. https://doi.org/10.1177/0892705708091860

    Article  CAS  Google Scholar 

  47. Ninomiya K, Abe M, Tsukegi T, Kuroda K, Omichi M, Takada K, Noguchi M, Tsuge Y, Ogino C, Taki K, Taima T (2017) Ionic liquid pretreatment of bagasse improves mechanical property of bagasse/polypropylene composites. Ind Crops Prod 109(May):158–162. https://doi.org/10.1016/j.indcrop.2017.08.019

  48. Ouarhim W, Zari N, Bouhfid R, Qaiss AEK (2018) Mechanical performance of natural fibers-based thermosetting composites. Mech Phys Testing Biocompos Fibre-Reinf Compos Hybrid Compos 43–60. https://doi.org/10.1016/B978-0-08-102292-4.00003-5

  49. Oza S, Ning H, Ferguson I, Lu N (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Compos B Eng 67:227–232. https://doi.org/10.1016/j.compositesb.2014.06.033

    Article  CAS  Google Scholar 

  50. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  51. Płotka-Wasylka J, Rutkowska M, Owczarek K, Tobiszewski M, Namieśnik J (2017) Extraction with environmentally friendly solvents. TrAC-Trends Anal Chem 91:12–25. https://doi.org/10.1016/j.trac.2017.03.006

    Article  CAS  Google Scholar 

  52. Ramesh M (2019) Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: a review on preparation, properties and prospects. Prog Mater Sci 102:109–166. https://doi.org/10.1016/j.pmatsci.2018.12.004

    Article  CAS  Google Scholar 

  53. Razak NIA, Ibrahim NA, Zainuddin N, Rayung M, Saad WZ (2014) The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(Lactic Acid) composites. Molecules 19(3):2957–2968. https://doi.org/10.3390/molecules19032957

    Article  CAS  Google Scholar 

  54. Renouard S, Hano C, Doussot J, Blondeau JP, Lainé E (2014) Characterization of ultrasonic impact on coir, flax and hemp fibers. Mater Lett 129:137–141. https://doi.org/10.1016/j.matlet.2014.05.018

    Article  CAS  Google Scholar 

  55. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Cleaner Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  CAS  Google Scholar 

  56. Sayanjali Jasbi M, Hasani H, Zadhoush A, Safi S (2018) Effect of alkali treatment on mechanical properties of the green composites reinforced with milkweed fibers. J Text Inst 109(1):24–31. https://doi.org/10.1080/00405000.2017.1320816

    Article  CAS  Google Scholar 

  57. Senthilkumar K, Saba N, Rajini N, Chandrasekar M, Jawaid M, Siengchin S, Alotman OY (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143

    Article  CAS  Google Scholar 

  58. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos B Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    Article  CAS  Google Scholar 

  59. Shahriar Kabir M, Hossain MS, Mia M, Islam MN, Rahman MM, Hoque MB, Chowdhury AMS (2018) Mechanical properties of gamma-irradiated natural fiber reinforced composites. Nano Hybrids Compos 23(January 2019):24–38. https://doi.org/10.4028/www.scientific.net/nhc.23.24

  60. Sun D (2016) Biodegradable green composites. Biodegrad Green Compos 19–38. https://doi.org/10.1002/9781118911068.ch1

  61. Sydow Z, Bieńczak K (2019) The overview on the use of natural fibers reinforced composites for food packaging. J Nat Fibers 16(8):1189–1200. https://doi.org/10.1080/15440478.2018.1455621

    Article  CAS  Google Scholar 

  62. Thakur K, Kalia S (2017) Enzymatic modification of ramie fibers and its influence on the performance of ramie-poly(butylene succinate) biocomposites. Int J Plast Technol 21(1):209–226. https://doi.org/10.1007/s12588-017-9178-3

    Article  CAS  Google Scholar 

  63. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos B Eng 174(May):106927. https://doi.org/10.1016/j.compositesb.2019.106927

    Article  CAS  Google Scholar 

  64. Xiong W (2018) Bagasse composites: a review of material preparation, attributes, and affecting factors. J Thermoplast Compos Mater 31(8):1112–1146. https://doi.org/10.1177/0892705717734596

    Article  Google Scholar 

  65. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B Eng 101:31–45. https://doi.org/10.1016/j.compositesb.2016.06.055

    Article  CAS  Google Scholar 

  66. Zimniewska M et al (2016) In: Rana R, Sohel F (eds) Fibrous and textile materials for composite applications. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Devnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devnani, G.L. (2021). Recent Trends in the Surface Modification of Natural Fibers for the Preparation of Green Biocomposite. In: Thomas, S., Balakrishnan, P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_10

Download citation

Publish with us

Policies and ethics