Skip to main content

Current Developments in Diagnostic Biosensor Technology: Relevance to Therapeutic Intervention of Infectious and Inflammatory Diseases of Human

  • Chapter
  • First Online:
Modern Techniques in Biosensors

Abstract

The current scenario of various infectious and inflammatory diseases of humans is indeed alarming. Implication of appropriate therapeutic strategies in many diseases was found to be limited due to the lack/inefficiency of accurate diagnostic approach. In this context, biosensor technology has come out as an efficacious mean to meet the need. Several types of diagnostic biosensors viz. electrochemical, enzymatic, optical, aptamer-based, and immunosensors have been developed and modified throughout the last decade and few of them are currently in use. Since early detection is considered the key behind adopting accurate therapeutic strategies, use of biosensors is growing day by day. Such high demand in the market has come out as a promising prospect in different research institute and industries dedicated to human health care. Major limitations amongst the available biosensing devices are high cost, lower accuracy, and sensitivity. Therefore, the major challenge in modern biosensor research is the development of miniatured biosensors which will facilitate in situ diagnosis and treatment. More collaborative research among different scientific communities are particularly needed to overcome the aforesaid challenge. This chapter has been written with an intension to present a generalized overview on the relevance of the modern diagnostic biosensors in human healthcare especially for diagnosing human health problems with special emphases on infectious and infectious diseases.

S. Mukherjee and N. Mukherjee are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Report on different human diseases: World Health Organization, https://www.who.int/. Last accessed 2020/02/21

  2. Hall, E.A.H.: Biosensors. Open University Press, Milton Keynes (1990)

    Google Scholar 

  3. Clark, L.C., Jr.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962)

    Article  Google Scholar 

  4. Metkar, S.K., Girigoswami, K.: Diagnostic biosensors in medicine—a review. Biocatal. Agric. Biotechnol. 17, 271–283 (2019)

    Article  Google Scholar 

  5. Spichiger-Keller, U.E.: Chemical Sensors and Biosensors for Medical and Biological Applications. Wiley, New York (2008)

    Google Scholar 

  6. Chung, Y.K., Reboud, J., Lee, K.C., Lim, H.M., Lim, P.Y., Wang, K.Y., Tang, K.C., Ji, H., Chen, Y.: An electrical biosensor for the detection of circulating tumor cells. Biosens. Bioelectron. 26, 2520–2526 (2011). https://doi.org/10.1016/j.bios.2010.10.048https://doi.org/10.1016/j.bios.2010.10.048

    Article  Google Scholar 

  7. Patel, S., Nanda, R., Sahoo, S., Mohapatra, E.: Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochem. Res. Int. 2016 (2016)

    Google Scholar 

  8. Hasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M.R., Dehghani, F., Khademhosseini, A.: Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10, 11–25 (2014)

    Article  Google Scholar 

  9. Boeneman, K., Delehanty, J.B., Susumu, K., Stewart, M.H., Deschamps, J.R., Medintz, I.L.: Quantum dots and fluorescent protein FRET-based biosensors. In: Nano-Biotechnology for Biomedical and Diagnostic Research, pp. 63–74. Springer, Berlin (2012)

    Google Scholar 

  10. Gouvea, C.: Biosensors for health applications. In: Biosensors for Health, Environment and Biosecurity. InTech (2011). https://doi.org/10.5772/16983

  11. Dey, B., Mondal, R.K., Mukherjee, S., Satpati, B., Mukherjee, N., Mandal, A., Senapati, D., Babu, S.P.S.: A supramolecular hydrogel for generation of a benign DNA-hydrogel. RSC Adv. 5, 105961–105968 (2015)

    Article  Google Scholar 

  12. Dey, B., Mukherjee, S., Mukherjee, N., Mondal, R.K., Satpati, B., Senapati, D., Babu, S.P.S.: Green silver nanoparticles for drug transport, bioactivities and a bacterium (Bacillus subtilis)-mediated comparative nano-patterning feature. RSC Adv. 6, 46573–46581 (2016)

    Article  Google Scholar 

  13. Dey, B., Mukherjee, S., Mukherjee, N., Mondal, R.K., Satpati, B., Babu, S.P.S.: Polyphenol oxidase-based luminescent enzyme hydrogel: an efficient redox active immobilized scaffold. Bull. Mater. Sci. 41, 14 (2018). https://doi.org/10.1007/s12034-017-1529-3https://doi.org/10.1007/s12034-017-1529-3

    Article  Google Scholar 

  14. Mukherjee, S., Basak, B., Bhunia, B., Dey, A., Mondal, B.: Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater. Rev. Environ. Sci. Bio/Technol. 12, 61–73 (2013)

    Article  Google Scholar 

  15. Mukherjee, S., Bandyopadhayay, B., Basak, B., Mandal, N., Apurba, D.E.Y., Mondal, B.: An improved method of optimizing the extraction of polyphenol oxidase from potato (Solanum tuberosum L.) Peel. Not. Sci. Biol. 4, 98–107 (2012)

    Google Scholar 

  16. Mondal, M.K., Mukherjee, S., Saha, S.K., Chowdhury, P., Babu, S.P.S.: Design and synthesis of reduced graphene oxide based supramolecular scaffold: a benign microbial resistant network for enzyme immobilization and cell growth. Mater. Sci. Eng. C 75, 1168–1177 (2017)

    Article  Google Scholar 

  17. Kylilis, N., Riangrungroj, P., Lai, H.E., Salema, V., Fernández, L.A., Stan, G.B.V., Freemont, P.S., Polizzi, K.M.: Whole-cell biosensor with tunable limit of detection enables low-cost agglutination assays for medical diagnostic applications. ACS Sens. 4, 370–378 (2019)

    Article  Google Scholar 

  18. Mukherjee, S., Joardar, N., Sengupta, S., Babu, S.P.S.: Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J. Nutr. Biochem. 61, 111–128 (2018)

    Article  Google Scholar 

  19. Chen, Z., Lu, M., Zou, D., Wang, H.: An E. coli SOS-EGFP biosensor for fast and sensitive detection of DNA damaging agents. J. Environ. Sci. 24, 541–549 (2012)

    Google Scholar 

  20. Khati, M.: The future of aptamers in medicine. J. Clin. Pathol. 63, 480–487 (2010)

    Article  Google Scholar 

  21. Liu, G., Mao, X., Phillips, J.A., Xu, H., Tan, W., Zeng, L.: Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem. 81, 10013–10018 (2009)

    Article  Google Scholar 

  22. Gruhl, F.J., Rapp, B.E., Länge, K.: Biosensors for diagnostic applications. In: Molecular Diagnostics, pp. 115–148. Springer, Berlin (2011)

    Google Scholar 

  23. Mondal, M.K., Mukherjee, S., Joardar, N., Roy, D., Chowdhury, P., Babu, S.P.S.: Synthesis of smart graphene quantum dots: a benign biomaterial for prominent intracellular imaging and improvement of drug efficacy. Appl. Surf. Sci. 495, 143562 (2019)

    Article  Google Scholar 

  24. Soler, M., Huertas, C.S., Lechuga, L.M.: Label-free plasmonic biosensors for point-of-care diagnostics: a review. Expert Rev. Mol. Diagn. 19, 71–81 (2019)

    Article  Google Scholar 

  25. Huang, H., Bai, W., Dong, C., Guo, R., Liu, Z.: An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 68, 442–446 (2015)

    Article  Google Scholar 

  26. Ghosh, D., Dhibar, S., Dey, A., Mukherjee, S., Joardar, N., Babu, S.P.S., Dey, B.: Graphene oxide dispersed supramolecular hydrogel capped benign green silver nanoparticles for anticancer, antimicrobial, cell attachment and intracellular imaging applications. J. Mol. Liq. 282, 1–12 (2019). https://doi.org/10.1016/j.molliq.2019.03.010

  27. Srinivasan, B., Tung, S.: Development and applications of portable biosensors. J. Lab. Autom. 20, 365–389 (2015)

    Article  Google Scholar 

  28. Rusling, J.F., Kumar, C.V., Gutkind, J.S., Patel, V.: Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. The Analyst 135, 2496–2511 (2010)

    Article  Google Scholar 

  29. Zheng, T., Pierre-Pierre, N., Yan, X., Huo, Q., Almodovar, A.J.O., Valerio, F., Rivera-Ramirez, I., Griffith, E., Decker, D.D., Chen, S.: Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl. Mater. Interfaces 7, 6819–6827 (2015)

    Article  Google Scholar 

  30. Abreu, C.M., Soares-Dos-Reis, R., Melo, P.N., Relvas, J.B., Guimarães, J., Sá, M.J., Cruz, A.P., Mendes Pinto, I.: Emerging biosensing technologies for neuroinflammatory and neurodegenerative disease diagnostics. Front. Mol. Neurosci. 11, 164 (2018). https://doi.org/10.3389/fnmol.2018.00164https://doi.org/10.3389/fnmol.2018.00164

    Article  Google Scholar 

  31. Cabral-Miranda, G., de Jesus, J.R., Oliveira, P.R.S., Britto, G.S.G., Pontes-de-Carvalho, L.C., Dutra, R.F., Alcântara-Neves, N.M.: Detection of parasite antigens in leishmania infantum–infected spleen tissue by monoclonal antibody-piezoelectric-based immunosensors. J. Parasitol. 100, 73–78 (2014)

    Article  Google Scholar 

  32. Mukherjee, S., Karmakar, S., Babu, S.P.S.: TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz. J. Infect. Dis. 20, 193–204 (2016)

    Article  Google Scholar 

  33. Mukherjee, S., Karnam, A., Das, M., Babu, S.P.S., Bayry, J.: Wuchereria bancrofti filaria activates human dendritic cells and polarizes T helper 1 and regulatory T cells via toll-like receptor 4. Commun. Biol. 2, 1–11 (2019)

    Article  Google Scholar 

  34. Lasker, R.D.: The diabetes control and complications trial. In: Implications for Policy and Practice (1993). https://doi.org/10.1056/NEJM199309303291410

  35. Cengiz, E., Tamborlane, W.V.: A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 11, S-11 (2009)

    Google Scholar 

  36. Castle, J.R., Ward, W.K.: Amperometric glucose sensors: sources of error and potential benefit of redundancy. J. Diabetes Sci. Technol. 4, 221–225 (2010)

    Article  Google Scholar 

  37. Beauharnois, M.E., Neelamegham, S., Matta, K.L.: Quantitative measurement of selectin-ligand interactions. In: Glycobiology Protocols, pp. 343–358. Springer, Berlin (2006)

    Google Scholar 

  38. Koschwanez, H.E., Reichert, W.M.: In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials 28, 3687–3703 (2007)

    Article  Google Scholar 

  39. Chu, M.X., Miyajima, K., Takahashi, D., Arakawa, T., Sano, K., Sawada, S., Kudo, H., Iwasaki, Y., Akiyoshi, K., Mochizuki, M., Mitsubayashi, K.: Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 83, 960–965 (2011). https://doi.org/10.1016/j.talanta.2010.10.055https://doi.org/10.1016/j.talanta.2010.10.055

    Article  Google Scholar 

  40. Pickup, J.C., Hussain, F., Evans, N.D., Sachedina, N.: In vivo glucose monitoring: the clinical reality and the promise. Biosens. Bioelectron. 20, 1897–1902 (2005)

    Article  Google Scholar 

  41. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. CA: Cancer J. Clin. 61, 69–90 (2011). https://doi.org/10.3322/caac.20107https://doi.org/10.3322/caac.20107

    Article  Google Scholar 

  42. Chambers, A.F., Groom, A.C., MacDonald, I.C.: Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002)

    Article  Google Scholar 

  43. Pantel, K., Brakenhoff, R.H.: Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448–456 (2004)

    Article  Google Scholar 

  44. Vineis, P., Schatzkin, A., Potter, J.D.: Models of carcinogenesis: an overview. Carcinogenesis 31, 1703–1709 (2010)

    Article  Google Scholar 

  45. Robert, J.: Gene polymorphisms. Bull. Cancer 97, 1253–1264 (2010). https://doi.org/10.1684/bdc.2010.1203https://doi.org/10.1684/bdc.2010.1203

    Article  Google Scholar 

  46. Tothill, I.E.: Biosensors for cancer markers diagnosis. In: Seminars in Cell & Developmental Biology, pp. 55–62. Elsevier, Amsterdam (2009)

    Google Scholar 

  47. Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J.G., Lin, Y.: Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 82, 7008–7014 (2010)

    Article  Google Scholar 

  48. Sadik, O.A., Aluoch, A.O., Zhou, A.: Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron. 24, 2749–2765 (2009)

    Article  Google Scholar 

  49. Lin, J., Ju, H.: Electrochemical and chemiluminescent immunosensors for tumor markers. Biosens. Bioelectron. 20, 1461–1470 (2005)

    Article  Google Scholar 

  50. Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)

    Article  Google Scholar 

  51. Ahmed, F.E.: Mining the oncoproteome and studying molecular interactions for biomarker development by 2DE, ChIP and SPR technologies. Expert Rev. Proteomics 5, 469–496 (2008)

    Article  Google Scholar 

  52. Liu, Y., Li, X., Zhang, Z., Zuo, G., Cheng, Z., Yu, H.: Nanogram per milliliter-level immunologic detection of alpha-fetoprotein with integrated rotating-resonance microcantilevers for early-stage diagnosis of heptocellular carcinoma. Biomed. Microdevices 11, 183–191 (2009)

    Article  Google Scholar 

  53. Pal, M., Khan, R.: Biosensor platforms for detection of cardiovascular disease risk biomarkers. In: Functional Polysaccharides for Biomedical Applications, pp. 397–431. Elsevier, Amsterdam (2019)

    Google Scholar 

  54. Qureshi, A., Gurbuz, Y., Niazi, J.H.: Biosensors for cardiac biomarkers detection: a review. Sens. Actuators B: Chem. 171, 62–76 (2012)

    Article  Google Scholar 

  55. Vashistha, R., Dangi, A.K., Kumar, A., Chhabra, D., Shukla, P.: Futuristic biosensors for cardiac health care: an artificial intelligence approach. 3 Biotech. 8, 358 (2018)

    Google Scholar 

  56. Joos, T.O., Stoll, D., Templin, M.F.: Miniaturised multiplexed immunoassays. Curr. Opin. Chem. Biol. 6, 76–80 (2002)

    Article  Google Scholar 

  57. Lane, C.A., Hardy, J., Schott, J.M.: Alzheimer’s disease. Eur. J. Neurol. 25, 59–70 (2018). https://doi.org/10.1111/ene.13439https://doi.org/10.1111/ene.13439

    Article  Google Scholar 

  58. Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M.L., Münch, A.E., Chung, W.S., Peterson, T.C.: Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017)

    Article  Google Scholar 

  59. Postuma, R.B., Berg, D., Stern, M., Poewe, W., Olanow, C.W., Oertel, W., Obeso, J., Marek, K., Litvan, I., Lang, A.E.: MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015)

    Article  Google Scholar 

  60. Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., Lang, A.E.: Parkinson disease. Nat. Rev. Dis. Prim. 3, 1–21 (2017)

    Google Scholar 

  61. Reich, D.S., Lucchinetti, C.F., Calabresi, P.A.: Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018). https://doi.org/10.1056/NEJMra1401483https://doi.org/10.1056/NEJMra1401483

    Article  Google Scholar 

  62. McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 263–269 (2011)

    Article  Google Scholar 

  63. Baraket, A., Lee, M., Zine, N., Sigaud, M., Bausells, J., Errachid, A.: A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens. Bioelectron. 93, 170–175 (2017)

    Article  Google Scholar 

  64. Biela, A., Watkinson, M., Meier, U.C., Baker, D., Giovannoni, G., Becer, C.R., Krause, S.: Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosens. Bioelectron. 68, 660–667 (2015)

    Article  Google Scholar 

  65. Carneiro, P., Loureiro, J., Delerue-Matos, C., Morais, S., do Carmo Pereira, M.: Alzheimer’s disease: development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sens. Actuators B Chem. 239, 157–165 (2017). https://doi.org/10.1016/j.snb.2016.07.181

  66. Rushworth, J.V., Ahmed, A., Griffiths, H.H., Pollock, N.M., Hooper, N.M., Millner, P.A.: A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens. Bioelectron. 56, 83–90 (2014)

    Article  Google Scholar 

  67. Heydari-Bafrooei, E., Amini, M., Ardakani, M.H.: An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Biosens. Bioelectron. 85, 828–836 (2016)

    Article  Google Scholar 

  68. Real-Fernández, F., Passalacqua, I., Peroni, E., Chelli, M., Lolli, F., Papini, A.M., Rovero, P.: Glycopeptide-based antibody detection in multiple sclerosis by surface plasmon resonance. Sensors 12, 5596–5607 (2012)

    Article  Google Scholar 

  69. Ahn, K.Y., Kwon, K., Huh, J., Kim, G.T., Lee, E.B., Park, D., Lee, J.: A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure. Biosens. Bioelectron. 28, 378–385 (2011)

    Article  Google Scholar 

  70. Islam, S., Shukla, S., Bajpai, V.K., Han, Y.K., Huh, Y.S., Kumar, A., Ghosh, A., Gandhi, S.: A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens. Bioelectron. 126, 792–799 (2019)

    Article  Google Scholar 

  71. Lee, B.H., Kim, S.H., Ko, Y., Park, J.C., Ji, S., Gu, M.B.: The sensitive detection of ODAM by using sandwich-type biosensors with a cognate pair of aptamers for the early diagnosis of periodontal disease. Biosens. Bioelectron. 126, 122–128 (2019). https://doi.org/10.1016/j.bios.2018.10.040https://doi.org/10.1016/j.bios.2018.10.040

    Article  Google Scholar 

  72. Im, H., Castro, C.M., Shao, H., Liong, M., Song, J., Pathania, D., Fexon, L., Min, C., Avila-Wallace, M., Zurkiya, O.: Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone. Proc. Natl. Acad. Sci. 112, 5613–5618 (2015)

    Article  Google Scholar 

  73. Dye, C.: After 2015: infectious diseases in a new era of health and development. Philos. Trans. R. Soc. London. Ser. B, Biol. Sci. 369, 20130426 (2014). https://doi.org/10.1098/rstb.2013.0426

  74. Almeida, S.L.: Trending now: re-emerging infectious disease update. J. Emerg. Nurs. 41, 104 (2015)

    Article  Google Scholar 

  75. Carinelli, S., Martí, M., Alegret, S., Pividori, M.I.: Biomarker detection of global infectious diseases based on magnetic particles. N. Biotechnol. 32, 521–532 (2015)

    Article  Google Scholar 

  76. Ince, J., McNally, A.: Development of rapid, automated diagnostics for infectious disease: advances and challenges. Expert Rev. Med. Devices 6, 641–651 (2009)

    Article  Google Scholar 

  77. Banoo, S., Bell, D., Bossuyt, P., Herring, A., Mabey, D., Poole, F., Smith, P.G., Sriram, N., Wongsrichanalai, C., Linke, R.: Evaluation of diagnostic tests for infectious diseases: general principles. Nat. Rev. Microbiol. 5, S21–S31 (2007)

    Article  Google Scholar 

  78. Calderaro, A., Arcangeletti, M.C., Rodighiero, I., Buttrini, M., Gorrini, C., Motta, F., Germini, D., Medici, M.C., Chezzi, C., De Conto, F.: Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep. 4, 1–10 (2014)

    Article  Google Scholar 

  79. Patel, R.: MALDI-TOF MS for the diagnosis of infectious diseases. Clin. Chem. 61, 100–111 (2015)

    Article  Google Scholar 

  80. Ko, E.R., Yang, W.E., McClain, M.T., Woods, C.W., Ginsburg, G.S., Tsalik, E.L.: What was old is new again: using the host response to diagnose infectious disease. Expert Rev. Mol. Diagn. 15, 1143–1158 (2015)

    Article  Google Scholar 

  81. Barzon, L., Lavezzo, E., Costanzi, G., Franchin, E., Toppo, S., Palù, G.: Next-generation sequencing technologies in diagnostic virology. J. Clin. Virol. 58, 346–350 (2013)

    Article  Google Scholar 

  82. Thorburn, F., Bennett, S., Modha, S., Murdoch, D., Gunson, R., Murcia, P.R.: The use of next generation sequencing in the diagnosis and typing of respiratory infections. J. Clin. Virol. 69, 96–100 (2015)

    Article  Google Scholar 

  83. Su, W., Gao, X., Jiang, L., Qin, J.: Microfluidic platform towards point-of-care diagnostics in infectious diseases. J. Chromatogr. A 1377, 13–26 (2015). https://doi.org/10.1016/j.chroma.2014.12.041https://doi.org/10.1016/j.chroma.2014.12.041

    Article  Google Scholar 

  84. Qasim, M., Lim, D.J., Park, H., Na, D.: Nanotechnology for diagnosis and treatment of infectious diseases. J. Nanosci. Nanotechnol. 14, 7374–7387 (2014)

    Article  Google Scholar 

  85. Wehrens, R., Franceschi, P., Vrhovsek, U., Mattivi, F.: Stability-based biomarker selection. Anal. Chim. Acta 705, 15–23 (2011)

    Article  Google Scholar 

  86. Gupta, S., Venkatesh, A., Ray, S., Srivastava, S.: Challenges and prospects for biomarker research: a current perspective from the developing world. Biochim. Biophys. Acta 1844, 899–908 (2014). https://doi.org/10.1016/j.bbapap.2013.12.020https://doi.org/10.1016/j.bbapap.2013.12.020

    Article  Google Scholar 

  87. He, Z., Yu, W.: Stable feature selection for biomarker discovery. Comput. Biol. Chem. 34, 215–225 (2010)

    Article  MATH  Google Scholar 

  88. Naylor, S.: Biomarkers: current perspectives and future prospects (2003). https://doi.org/10.1586/14737159.3.5.525

  89. Vopálenská, I., Váchová, L., Palková, Z.: New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosens. Bioelectron. 72, 160–167 (2015)

    Article  Google Scholar 

  90. Kashem, M.A., Suzuki, M., Kimoto, K., Iribe, Y.: An optical biochemical oxygen demand biosensor chip for environmental monitoring. Sens. Actuators B: Chem. 221, 1594–1600 (2015)

    Article  Google Scholar 

  91. Hughes, G., Pemberton, R.M., Fielden, P.R., Hart, J.P.: Development of a novel reagentless, screen-printed amperometric biosensor based on glutamate dehydrogenase and NAD+, integrated with multi-walled carbon nanotubes for the determination of glutamate in food and clinical applications. Sens. Actuators B: Chem. 216, 614–621 (2015)

    Article  Google Scholar 

  92. Nasirizadeh, N., Zare, H.R., Pournaghi-Azar, M.H., Hejazi, M.S.: Introduction of hematoxylin as an electroactive label for DNA biosensors and its employment in detection of target DNA sequence and single-base mismatch in human papilloma virus corresponding to oligonucleotide. Biosens. Bioelectron. 26, 2638–2644 (2011)

    Article  Google Scholar 

  93. Nambiar, S., Yeow, J.T.W.: Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26, 1825–1832 (2011)

    Article  Google Scholar 

  94. Chen, J.C., Chung, H.H., Hsu, C.T., Tsai, D.M., Kumar, A.S., Zen, J.M.: A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sens. Actuators B: Chem. 110, 364–369 (2005)

    Article  Google Scholar 

  95. Pahurkar, V.G., Tamgadge, Y.S., Gambhire, A.B., Muley, G.G.: Glucose oxidase immobilized PANI cladding modified fiber optic intrinsic biosensor for detection of glucose. Sens. Actuators B: Chem. 210, 362–368 (2015)

    Article  Google Scholar 

  96. Zhang, Y., Tadigadapa, S.: Calorimetric biosensors with integrated microfluidic channels. Biosens. Bioelectron. 19, 1733–1743 (2004)

    Article  Google Scholar 

  97. Su, L., Zou, L., Fong, C.C., Wong, W.L., Wei, F., Wong, K.Y., Wu, R.S.S., Yang, M.: Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens. Bioelectron. 46, 155–161 (2013)

    Article  Google Scholar 

  98. Gerard, M., Chaubey, A., Malhotra, B.D.: Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–359 (2002). https://doi.org/10.1016/s0956-5663(01)00312-8https://doi.org/10.1016/s0956-5663(01)00312-8

    Article  Google Scholar 

  99. Liew, P.S., Lertanantawong, B., Lee, S.Y., Manickam, R., Lee, Y.H., Surareungchai, W.: Electrochemical genosensor assay using lyophilized gold nanoparticles/latex microsphere label for detection of Vibrio cholerae. Talanta 139, 167–173 (2015)

    Article  Google Scholar 

  100. Murphy, L.: Biosensors and bioelectrochemistry. Curr. Opin. Chem. Biol. 10, 177–184 (2006). https://doi.org/10.1016/j.cbpa.2006.02.023https://doi.org/10.1016/j.cbpa.2006.02.023

    Article  Google Scholar 

  101. Castro, A.C.H., França, E.G., de Paula, L.F., Soares, M.M.C.N., Goulart, L.R., Madurro, J.M., Brito-Madurro, A.G.: Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus. Appl. Surf. Sci. 314, 273–279 (2014)

    Article  Google Scholar 

  102. Ligaj, M., Tichoniuk, M., Gwiazdowska, D., Filipiak, M.: Electrochemical DNA biosensor for the detection of pathogenic bacteria Aeromonas hydrophila. Electrochim. Acta. 128, 67–74 (2014)

    Article  Google Scholar 

  103. Dmitriev, D.A., Massino, Y.S., Segal, O.L., Smirnova, M.B., Pavlova, E.V., Gurevich, K.G., Gnedenko, O.V., Ivanov, Y.D., Kolyaskina, G.I., Archakov, A.I., Osipov, A.P., Dmitriev, A.D., Egorov, A.M.: Analysis of the binding of bispecific monoclonal antibodies with immobilized antigens (human IgG and horseradish peroxidase) using a resonant mirror biosensor. J. Immunol. Methods 261, 103–118 (2002). https://doi.org/10.1016/s0022-1759(01)00558-0https://doi.org/10.1016/s0022-1759(01)00558-0

    Article  Google Scholar 

  104. Abe, K., Yoshida, W., Ikebukuro, K.: Electrochemical biosensors using aptamers for theranostics. In: Biosensors Based on Aptamers and Enzymes, pp. 183–202. Springer, Berlin (2013)

    Google Scholar 

  105. Sanders, C.A., Rodriguez, M., Jr., Greenbaum, E.: Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Biosens. Bioelectron. 16, 439–446 (2001)

    Article  Google Scholar 

  106. Park, M., Tsai, S.L., Chen, W.: Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13, 5777–5795 (2013)

    Article  Google Scholar 

  107. Nguyen, B.T.T., Peh, A.E.K., Chee, C.Y.L., Fink, K., Chow, V.T.K., Ng, M.M.L., Toh, C.S.: Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor. Bioelectrochemistry 88, 15–21 (2012)

    Article  Google Scholar 

  108. Cecchetto, J., Carvalho, F.C., Santos, A., Fernandes, F.C.B., Bueno, P.R.: An impedimetric biosensor to test neat serum for dengue diagnosis. Sens. Actuators B: Chem. 213, 150–154 (2015)

    Article  Google Scholar 

  109. Yang, L., Du, F., Chen, G., Yasmeen, A., Tang, Z.: A novel colorimetric PCR-based biosensor for detection and quantification of hepatitis B virus. Anal. Chim. Acta 840, 75–81 (2014)

    Article  Google Scholar 

  110. Campos-Ferreira, D.S., Nascimento, G.A., Souza, E.V.M., Souto-Maior, M.A., Arruda, M.S., Zanforlin, D.M.L., Ekert, M.H.F., Bruneska, D., Lima-Filho, J.L.: Electrochemical DNA biosensor for human papillomavirus 16 detection in real samples. Anal. Chim. Acta 804, 258–263 (2013)

    Article  Google Scholar 

  111. Urrego, L.F., Lopez, D.I., Ramirez, K.A., Ramirez, C., Osma, J.F.: Biomicrosystem design and fabrication for the human papilloma virus 16 detection. Sens. Actuators B: Chem. 207, 97–104 (2015)

    Article  Google Scholar 

  112. Shourian, M., Ghourchian, H., Boutorabi, M.: Ultra-sensitive immunosensor for detection of hepatitis B surface antigen using multi-functionalized gold nanoparticles. Anal. Chim. Acta 895, 1–11 (2015)

    Article  Google Scholar 

  113. Nascimento, H.P.O., Oliveira, M.D.L., de Melo, C.P., Silva, G.J.L., Cordeiro, M.T., Andrade, C.A.S.: An impedimetric biosensor for detection of dengue serotype at picomolar concentration based on gold nanoparticles-polyaniline hybrid composites. Colloids Surfaces B Biointerfaces 86, 414–419 (2011)

    Article  Google Scholar 

  114. Silva, M.M.S., Dias, A., Cordeiro, M.T., Marques, E., Jr., Goulart, M.O.F., Dutra, R.F.: A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein. Talanta 128, 505–510 (2014)

    Article  Google Scholar 

  115. Sanvicens, N., Pastells, C., Pascual, N., Marco, M.P.: Nanoparticle-based biosensors for detection of pathogenic bacteria. TrAC Trends Anal. Chem. 28, 1243–1252 (2009)

    Article  Google Scholar 

  116. Wang, Y., Ye, Z., Ying, Y.: New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 12, 3449–3471 (2012)

    Article  Google Scholar 

  117. Singh, R., Mukherjee, M.D., Sumana, G., Gupta, R.K., Sood, S., Malhotra, B.D.: Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens. Actuators B: Chem. 197, 385–404 (2014)

    Google Scholar 

  118. Ibrahim, F., Thio, T.H.G., Faisal, T., Neuman, M.: The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review. Sensors 15, 6947–6995 (2015)

    Article  Google Scholar 

  119. Garcia-Monco, J.C.: Tuberculosis. Handb. Clin. Neurol. 121, 1485–1499 (2014). https://doi.org/10.1016/B978-0-7020-4088-7.00100-0https://doi.org/10.1016/B978-0-7020-4088-7.00100-0

    Article  Google Scholar 

  120. Liu, C., Jiang, D., Xiang, G., Liu, L., Liu, F., Pu, X.: An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. Analyst 139, 5460–5465 (2014)

    Article  Google Scholar 

  121. Costa, M.P., Andrade, C.A.S., Montenegro, R.A., Melo, F.L., Oliveira, M.D.L.: Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J. Colloid Interface Sci. 433, 141–148 (2014)

    Article  Google Scholar 

  122. Zhang, C., Lou, J., Tu, W., Bao, J., Dai, Z.: Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease. The Analyst 140, 506–511 (2015)

    Article  Google Scholar 

  123. Barreda-García, S., González-Álvarez, M.J., de-los-Santos-Álvarez, N., Palacios-Gutiérrez, J.J., Miranda-Ordieres, A.J., Lobo-Castañón, M.J.: Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens. Bioelectron. 68, 122–128 (2015)

    Google Scholar 

  124. Mukundan, H., Kumar, S., Price, D.N., Ray, S.M., Lee, Y.J., Min, S., Eum, S., Kubicek-Sutherland, J., Resnick, J.M., Grace, W.K.: Rapid detection of Mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis 92, 407–416 (2012)

    Article  Google Scholar 

  125. Hsieh, S.C., Chang, C.C., Lu, C.C., Wei, C.F., Lin, C.S., Lai, H.C., Lin, C.W.: Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method. Nanoscale Res. Lett. 7, 180 (2012)

    Article  Google Scholar 

  126. Kim, J.H., Yeo, W.H., Shu, Z., Soelberg, S.D., Inoue, S., Kalyanasundaram, D., Ludwig, J., Furlong, C.E., Riley, J.J., Weigel, K.M.: Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip. 12, 1437–1440 (2012)

    Article  Google Scholar 

  127. Rachkov, A., Patskovsky, S., Soldatkin, A., Meunier, M.: Discrimination of single base mismatched oligonucleotides related to the rpoB gene of Mycobacterium tuberculosis using a surface plasmon resonance biosensor. Biotechnol. Appl. Biochem. 60, 453–458 (2013)

    Article  Google Scholar 

  128. Hsu, S.H., Lin, Y.Y., Lu, S.H., Tsai, I., Lu, Y.T., Ho, H.T.: Mycobacterium tuberculosis DNA detection using surface plasmon resonance modulated by telecommunication wavelength. Sensors 14, 458–467 (2014)

    Article  Google Scholar 

  129. Goulart, I.M.B., Goulart, L.R.: Leprosy: diagnostic and control challenges for a worldwide disease. Arch. Dermatol. Res. 300, 269–290 (2008). https://doi.org/10.1007/s00403-008-0857-yhttps://doi.org/10.1007/s00403-008-0857-y

    Article  Google Scholar 

  130. Afonso, A.S., Goulart, L.R., Goulart, I.M.B., Machado, A.E.H., Madurro, J.M., Brito-Madurro, A.G.: A promising bioelectrode based on gene of Mycobacterium leprae immobilized onto poly (4-aminophenol). J. Appl. Polym. Sci. 118, 2921–2928 (2010)

    Article  Google Scholar 

  131. Cardoso, L.P.V., Dias, R.F., Freitas, A.A., Hungria, E.M., Oliveira, R.M., Collovati, M., Reed, S.G., Duthie, M.S., Stefani, M.M.A.: Development of a quantitative rapid diagnostic test for multibacillary leprosy using smart phone technology. BMC Infect. Dis. 13, 1–10 (2013)

    Google Scholar 

  132. Abio, A., Neal, K.R., Beck, C.R.: An epidemiological review of changes in meningococcal biology during the last 100 years (2013)

    Google Scholar 

  133. Reddy, S.B., Mainwaring, D.E., Al Kobaisi, M., Zeephongsekul, P., Fecondo, J.V.: Acoustic wave immunosensing of a meningococcal antigen using gold nanoparticle-enhanced mass sensitivity. Biosens. Bioelectron. 31, 382–387 (2012)

    Article  Google Scholar 

  134. Dash, S.K., Sharma, M., Khare, S., Kumar, A.: Omp85 genosensor for detection of human brain bacterial meningitis. Biotechnol. Lett. 35, 929–935 (2013a)

    Article  Google Scholar 

  135. Patel, M.K., Solanki, P.R., Seth, S., Gupta, S., Khare, S., Kumar, A., Malhotra, B.D.: CtrA gene based electrochemical DNA sensor for detection of meningitis. Electrochem. Commun. 11, 969–973 (2009)

    Article  Google Scholar 

  136. Dash, S.K., Sharma, M., Khare, S., Kumar, A.: rmpM genosensor for detection of human brain bacterial meningitis in cerebrospinal fluid. Appl. Biochem. Biotechnol. 171, 198–208 (2013b)

    Article  Google Scholar 

  137. Xiang, Y., Zhu, X., Huang, Q., Zheng, J., Fu, W.: Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens. Bioelectron. 66, 512–519 (2015)

    Article  Google Scholar 

  138. Tak, M., Gupta, V., Tomar, M.: Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Biosens. Bioelectron. 59, 200–207 (2014)

    Article  Google Scholar 

  139. Jain, P., Chakma, B., Patra, S., Goswami, P.: Potential biomarkers and their applications for rapid and reliable detection of malaria. Biomed. Res. Int. 2014 (2014)

    Google Scholar 

  140. Sharma, M.K., Rao, V.K., Agarwal, G.S., Rai, G.P., Gopalan, N., Prakash, S., Sharma, S.K., Vijayaraghavan, R.: Highly sensitive amperometric immunosensor for detection of Plasmodium falciparum histidine-rich protein 2 in serum of humans with malaria: comparison with a commercial kit. J. Clin. Microbiol. 46, 3759–3765 (2008)

    Article  Google Scholar 

  141. Sharma, M.K., Agarwal, G.S., Rao, V.K., Upadhyay, S., Merwyn, S., Gopalan, N., Rai, G.P., Vijayaraghavan, R., Prakash, S.: Amperometric immunosensor based on gold nanoparticles/alumina sol–gel modified screen-printed electrodes for antibodies to Plasmodium falciparum histidine rich protein-2. The Analyst 135, 608–614 (2010)

    Article  Google Scholar 

  142. Sharma, M.K., Rao, V.K., Merwyn, S., Agarwal, G.S., Upadhyay, S., Vijayaraghavan, R.: A novel piezoelectric immunosensor for the detection of malarial Plasmodium falciparum histidine rich protein-2 antigen. Talanta 85, 1812–1817 (2011)

    Article  Google Scholar 

  143. Sikarwar, B., Sharma, P.K., Srivastava, A., Agarwal, G.S., Boopathi, M., Singh, B., Jaiswal, Y.K.: Surface plasmon resonance characterization of monoclonal and polyclonal antibodies of malaria for biosensor applications. Biosens. Bioelectron. 60, 201–209 (2014)

    Article  Google Scholar 

  144. Lee, S., Song, K.M., Jeon, W., Jo, H., Shim, Y.B., Ban, C.: A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria. Biosens. Bioelectron. 35, 291–296 (2012)

    Article  Google Scholar 

  145. Jeon, W., Lee, S., Manjunatha, D.H., Ban, C.: A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Anal. Biochem. 439, 11–16 (2013)

    Article  Google Scholar 

  146. Ittarat, W., Chomean, S., Sanchomphu, C., Wangmaung, N., Promptmas, C., Ngrenngarmlert, W.: Biosensor as a molecular malaria differential diagnosis. Clin. Chim. Acta 419, 47–51 (2013)

    Article  Google Scholar 

  147. Xiao, J., Yolken, R.H.: Strain hypothesis of Toxoplasma gondii infection on the outcome of human diseases. Acta Physiol. 213, 828–845 (2015)

    Article  Google Scholar 

  148. Wang, H., Lei, C., Li, J., Wu, Z., Shen, G., Yu, R.: A piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. Biosens. Bioelectron. 19, 701–709 (2004)

    Article  Google Scholar 

  149. Ding, Y., Wang, H., Shen, G., Yu, R.: Enzyme-catalyzed amplified immunoassay for the detection of Toxoplasma gondii-specific IgG using Faradaic impedance spectroscopy, CV and QCM. Anal. Bioanal. Chem. 382, 1491–1499 (2005). https://doi.org/10.1007/s00216-005-3350-xhttps://doi.org/10.1007/s00216-005-3350-x

    Article  Google Scholar 

  150. Luo, Y., Liu, X., Jiang, T., Liao, P., Fu, W.: Dual-aptamer-based biosensing of toxoplasma antibody. Anal. Chem. 85, 8354–8360 (2013)

    Article  Google Scholar 

  151. He, L., Ni, L., Zhang, X., Zhang, C., Li, R., Xu, S.: Fluorescent detection of specific DNA sequences related to Toxoplasma gondii based on magnetic fluorescent nanoparticles Fe3O4/CdTe biosensor. Int. J. Biochem. Res. Rev. 6, 130 (2015)

    Article  Google Scholar 

  152. Kevric, I., Cappel, M.A., Keeling, J.H.: New world and old world Leishmania infections: a practical review. Dermatol. Clin. 33, 579–593 (2015)

    Article  Google Scholar 

  153. Souto, D.E.P., Silva, J.V., Martins, H.R., Reis, A.B., Luz, R.C.S., Kubota, L.T., Damos, F.S.: Development of a label-free immunosensor based on surface plasmon resonance technique for the detection of anti-Leishmania infantum antibodies in canine serum. Biosens. Bioelectron. 46, 22–29 (2013)

    Google Scholar 

  154. Sousa, S., Cardoso, L., Reed, S.G., Reis, A.B., Martins-Filho, O.A., Silvestre, R., da Silva, A.C.: Development of a fluorescent based immunosensor for the serodiagnosis of canine leishmaniasis combining immunomagnetic separation and flow cytometry. PLoS Negl. Trop. Dis. 7, e2371 (2013)

    Article  Google Scholar 

  155. Mohan, S., Srivastava, P., Maheshwari, S.N., Sundar, S., Prakash, R.: Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). The Analyst 136, 2845–2851 (2011)

    Article  Google Scholar 

  156. Nouvellet, P., Cucunubá, Z.M., Gourbière, S.: Ecology, evolution and control of Chagas disease: a century of neglected modelling and a promising future. In: Advances in Parasitology, pp. 135–191. Elsevier, Amsterdam (2015)

    Google Scholar 

  157. Diniz, F.B., Ueta, R.R., Pedrosa, A.M.D.C., Areias, M.D.C., Pereira, V.R.A., Silva, E.D., da Silva, J.G.J., Ferreira, A.G.P., Gomes, Y.M.: Impedimetric evaluation for diagnosis of Chagas’ disease: antigen-antibody interactions on metallic electrodes. Biosens. Bioelectron. 19, 79–84 (2003). https://doi.org/10.1016/s0956-5663(03)00213-6

  158. Ferreira, A.A.P., Colli, W., da Costa, P.I., Yamanaka, H.: Immunosensor for the diagnosis of Chagas’ disease. Biosens. Bioelectron. 21, 175–181 (2005). https://doi.org/10.1016/j.bios.2004.08.001https://doi.org/10.1016/j.bios.2004.08.001

    Article  Google Scholar 

  159. Pereira, S.V., Bertolino, F.A., Fernández-Baldo, M.A., Messina, G.A., Salinas, E., Sanz, M.I., Raba, J.: A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. The Analyst 136, 4745–4751 (2011)

    Article  Google Scholar 

  160. Lee, S., Manjunatha, D.H., Jeon, W., Ban, C.: Cationic surfactant-based colorimetric detection of Plasmodium lactate dehydrogenase, a biomarker for malaria, using the specific DNA aptamer. PLoS ONE 9, e100847 (2014)

    Article  Google Scholar 

  161. Zhu, Y., Chandra, P., Shim, Y.B.: Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Anal. Chem. 85, 1058–1064 (2013)

    Article  Google Scholar 

  162. Rasooly, A., Jacobson, J.: Development of biosensors for cancer clinical testing. Biosens. Bioelectron. 21, 1851–1858 (2006)

    Article  Google Scholar 

  163. Roy, B., Mukherjee, S., Mukherjee, N., Chowdhury, P., Babu, S.P.S.: Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency. RSC Adv. 4, 34487–34499 (2014)

    Article  Google Scholar 

  164. Chakraborty, I., Saha, U., Mandal, D., Mukherjee, S., Joardar, N., Sinha Babu, S.P., Suresh Kumar, G., Mandal, K.: Effect of bovine serum albumin on tartrate-modified manganese ferrite nano hollow spheres: spectroscopic and toxicity study. Phys. Chem. Chem. Phys. 21, 10726–10737 (2019). https://doi.org/10.1039/C9CP01877Hhttps://doi.org/10.1039/C9CP01877H

    Article  Google Scholar 

  165. Mukherjee, S., Mukherjee, S., Bhattacharya, S., Sinha Babu, S.P.: Surface proteins of Setaria cervi induce inflammation in macrophage through Toll-like receptor 4 (TLR4)-mediated signalling pathway. Parasite Immunol. 39 (2017). https://doi.org/10.1111/pim.12389

  166. Mukherjee, S., Huda, S., Sinha Babu, S.P.: Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand. J. Immunol. 90, e12771 (2019). https://doi.org/10.1111/sji.12771https://doi.org/10.1111/sji.12771

    Article  Google Scholar 

  167. Mukherjee, S., Mukherjee, S., Maiti, T.K., Bhattacharya, S., Sinha Babu, S.P.: A novel ligand of Toll-like receptor 4 from the sheath of Wuchereria bancrofti microfilaria induces proinflammatory response in macrophages. J. Infect. Dis. 215, 954–965 (2017)

    Article  Google Scholar 

  168. Cavallo, M.F., Kats, A.M., Chen, R., Hartmann, J.X., Pavlovic, M.: A novel method for real-time, continuous, fluorescence-based analysis of anti-DNA abzyme activity in systemic lupus. Autoimmune Dis. 2012 (2012)

    Google Scholar 

  169. Carpenter, A.C., Paulsen, I.T., Williams, T.C.: Blueprints for biosensors: design, limitations, and applications. Genes (Basel). 9, 375 (2018)

    Google Scholar 

Download references

Acknowledgements

Space constraint restricted us to incorporate limited and selected publications but we do acknowledge all the uncited related articles/studies which are equally important for the advancement of biosensor technology.

Disclosure

Dr. Niladri Mukherjee is working as a guest faculty in the Department of Animal Science, Kazi Nazrul University, Asansol, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprabhat Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, S., Mukherjee, N. (2021). Current Developments in Diagnostic Biosensor Technology: Relevance to Therapeutic Intervention of Infectious and Inflammatory Diseases of Human. In: Dutta, G., Biswas, A., Chakrabarti, A. (eds) Modern Techniques in Biosensors. Studies in Systems, Decision and Control, vol 327. Springer, Singapore. https://doi.org/10.1007/978-981-15-9612-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9612-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9611-7

  • Online ISBN: 978-981-15-9612-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics