Skip to main content

Greenhouse Gas Emissions from Municipal Solid Waste Management: A Review of Global Scenario

  • Chapter
  • First Online:
Carbon Footprint Case Studies

Abstract

Increases in the population and prosperity are significant contributors to waste generation. Globally, ~2.01 billion metric tonnes of municipal solid waste (MSW) are produced annually, which are expected to upsurge by two folds in 2050, thereby raising a matter of concern in future. The chapter aims to assess the greenhouse gas (GHG) emissions from MSW management and its subsequent impacts on socioeconomic status of people and ecological systems. The study also includes mitigation strategies to reduce emissions of GHGs from waste management. The life cycle assessment of MSW management in relation to GHG emissions discloses that more than 50% of the collected waste is not managed properly instead openly burned or dumped at landfills in most developing countries. Moreover, nearly 10–40% is processed through recycling and composting. Total GHG (CH4, CO2, and N2O) emissions from waste management contribute approximately 5% of overall GHG emissions into the atmosphere. Methane generation exclusively accounts for 1–2% of GHG release from the process of waste management. The emitted GHGs lead to global warming, climate change, and adversely affect the living organisms on the earth. Therefore, sustainable management of the system from collection to treatment and disposal with special emphasis on GHGs emission minimization is essential to sustain the available resources and safeguard the environment. The study highlights the strategies such as 5-R principal, waste segregation at household level, use of natural gas-based vehicles, advanced modifications in the system of waste management in developing countries, utilization of compost and residue as manure, and reclamation of abandoned landfill sites to mitigate the emissions for sustainable progression of the nations. The review also provides a basis for decision-makers in local, national, and regional levels to formulate and execute strategies and policies for mitigating GHG emanations during MSW management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Shafy HI, Mansour MS (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egyptian J Petrol 27(4):1275–1290

    Article  Google Scholar 

  2. Ahluwalia IJ, Patel U (2018) Solid waste management in India: an assessment of resource recovery and environmental impact. Indian Council for Research on International Economic Relations. https://think-asia.org/bitstream/handle/11540/8143/Working_Paper_356.pdf?sequence=1. Accessed 20 June 2020

  3. Allsopp M, Page R, Johnston P, Santillo D (2009). State of the world’s oceans. https://doi.org/10.1007/978-1-4020-9116-2. Accessed 21 July 2020

  4. Blanco G, Gerlagh R, Suh S, Barrett J, de Coninck HC, Morejon CFD, Mathur R, NakicenovicN, et al (2014) Drivers, trends and mitigation. In: Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5. Cambridge University Press. http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/i. Accessed 16 July 2020

  5. Bogner J, Ahmed AM, Diaz C, Faaij A, Gao Q, Hashimoto S, Mareckova K, Pipatti R, Zhang T (2007) Waste management. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (Eds) Climate change 2007: mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom and New York, NY, USA

    Google Scholar 

  6. Bölükbaş A, Akıncı G (2018) Solid waste composition and the properties of biodegradable fractions in Izmir City, Turkey: an investigation on the influencing factors. J Environ Health Sci Eng 16(2):299–311

    Article  CAS  Google Scholar 

  7. Brown BE, Dunne RP, Somerfield PJ, Edwards AJ, Simons WJF, Phongsuwan N, Naeije MC (2019) Long-term impacts of rising sea temperature and sea level on shallow water coral communities over a ~ 40 year period. Sci Rep 9(1):1–12

    Google Scholar 

  8. Centre for Science and Environment (CSE) 2020. https://www.cseindia.org/. Accessed 28 July 2020

  9. Chen DMC, Bodirsky BL, Krueger T, Mishra A, Popp A (2020) The world’s growing municipal solid waste: trends and impacts. Environ Res Lett 15(7):074021

    Article  CAS  Google Scholar 

  10. Cheng H, Hu Y (2010) Curbing dioxin emissions from municipal solid waste incineration in China: re-thinking about management policies and practices. Environ Pollut 158(9):2809–2814

    Article  CAS  Google Scholar 

  11. Chiemchaisri C, Visvanathan C (2008) Greenhouse gas emission potential of the municipal solid waste disposal sites in Thailand. J Air Waste Manag Assoc 58(5):629–635

    Article  CAS  Google Scholar 

  12. Cleary J (2009) Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ Int 35(8):1256–1266

    Article  Google Scholar 

  13. Cointreau S (2001) Declaration of principles for sustainable and integrated solid waste management. World Bank, Washington, DC, p 4

    Google Scholar 

  14. Central Pollution Control Board (CPCB) (2011). https://greentribunal.gov.in/sites/default/files/news_updates/REPORT%20BY%20CPCB%20IN%20OA%20NO.%20514%20of%202018.pdf. Accessed 28 June 2020

  15. Danthurebandara M, Van Passel S, Nelen D, Tielemans Y, Van Acker K (2012) Environmental and socio-economic impacts of landfills. Linnaeus Eco-Tech 2012:40–52

    Google Scholar 

  16. de la Barrera B, Hooda PS (2016) Greenhouse gas emissions of waste management processes and options: a case study. Waste Manage Res 34(7):658–665

    Article  Google Scholar 

  17. Department of Fertilisers (2017) 34th Report of the standing committee on chemicals and fertilisers on implementation of policy on promotion of city compost. 16th Lok Sabha, Lok Sabha Secretariat, Government of India

    Google Scholar 

  18. Domínguez M, Núñez RP, Piñeiro J, Barral MT (2019) Physicochemical and biochemical properties of an acid soil under potato culture amended with municipal solid waste compost. Int J Recycl Organic Waste Agri 8(2):171–178

    Article  Google Scholar 

  19. Eisted R, Larsen AW, Christensen TH (2009) Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution. Waste Manag Res 27(8):738–745

    Article  CAS  Google Scholar 

  20. European Integrated Pollution Prevention and Control Bureau (EIPPCB) (2006) Reference document on the best available techniques for the waste treatments industries. European Integrated Pollution Prevention and Control Bureau. ftp://ftp.jrc.es/pub/eippcb/doc/wt_bref_0806.pdf. Accessed 10 July 2020

    Google Scholar 

  21. Elnaas A (2015) Actual situation and approach for municipal solid waste treatment in the Arab region. Universität, Agrar-und Umweltwissenschaftliche Fakultät. http://rosdok.uni-rostock.de/file/rosdok_disshab_0000001580/rosdok_derivate_0000034733/Dissertation_Elnaas_2016.pdf. Accesses 16 July 2020

  22. Environmental Protection Agency (EPA) (2020) https://www.epa.gov/sites/production/files/2020–04/documents/fastfacts-1990-2018.pdf. Accessed 19 July 2020

  23. European Commission (2010) International reference life cycle data system (ILCD) Handbook—General guide for Life Cycle Assessment—Detailed guidance: First edition. European Commission Joint Research Centre, Institute for Environment and Sustainability. Publications Office of the European Union. Luxembourg

    Google Scholar 

  24. Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health 16(6):1060

    Article  CAS  Google Scholar 

  25. Friedrich E, Trois C (2011) Quantification of greenhouse gas emissions from waste management processes for municipalities–A comparative review focusing on Africa. Waste Manag 31(7):1585–1596

    Article  Google Scholar 

  26. Gautam M, Agrawal M (2017) Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (DC) Stapf.) grown under different levels of red mud in sewage sludge amended soil. Chemosphere 175:315–322

    Article  CAS  Google Scholar 

  27. Gautam M, Agrawal M (2019) Identification of metal tolerant plant species for sustainable phytomanagement of abandoned red mud dumps. Appl Geochem 104:83–92

    Article  CAS  Google Scholar 

  28. Gautam M, Pandey B, Agrawal M (2018) Carbon footprint of aluminium production: emissions and mitigation. In: Muthu SS (ed) Environmental carbon footprints: industrial case studies. Elsevier, Singapore, pp 197–228. ISBN 978-0-12-812849-7

    Chapter  Google Scholar 

  29. Gidarakos E, Havas G, Ntzamilis P (2006) Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete. Waste Manag 26(6):668–679

    Article  CAS  Google Scholar 

  30. Greater London Authority (2014) Greenhouse gas calculator for municipal waste user manual. http://www.london.gov.uk/sites/default/files/archives/GreenhouseGasCalcUserManual.pdf. Accessed 7 July 2020

  31. Greenhouse gas (GHG Platform (2019) Waste Sector, India. http://www.ghgplatform-india.org/waste-sector. Accessed 04 June 2020

  32. Güereca LP, Gassó S, Baldasano JM, Jiménez-Guerrero P (2006) Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour Conserv Recycl 49(1):32–48

    Article  Google Scholar 

  33. Haro K, Ouarma I, Nana B, Bere A, Tubreoumya GC, Kam SZ, Koulidiati J (2019) Assessment of CH4 and CO2 surface emissions from Polesgo’s landfill (Ouagadougou, Burkina Faso) based on static chamber method. Adv Climate Change Res 10(3):181–191

    Google Scholar 

  34. Hoornweg D, Tata PB (2012) What a waste: a global review of solid waste. World Bank, Washington, DC. http://documents1.worldbank.org/curated/en/302341468126264791/pdf/68135-REVISED-What-a-Waste-2012-Final-updated.pdf. Accessed 15 July 2020

  35. Hutton B, Horan E, Norrish M (2009) Waste management options to control greenhouse gas emissions–landfill, compost or incineration. In: Paper for the international solid waste association (ISWA) conference, Portugal, pp 12–15

    Google Scholar 

  36. Ibikunle RA, Titiladunayo IF, Akinnuli BO, Osueke CO, Dahunsi SO, Olayanju A (2019, August) Impact of physical and chemical properties of municipal solid waste on its electrical power rating potential. J Phys: Conf Series 1299(1):012003). IOP Publishing

    Google Scholar 

  37. Imam A, Mohammed B, Wilson DC, Cheeseman CR (2008) Solid waste management in Abuja, Nigeria. Waste Manag 28(2):468–472

    Article  CAS  Google Scholar 

  38. Intergovernmental Panel on Climate Change (IPCC) (2001). Storage of CO2 Intergovernmental Panel on Climate Change, Cam- in the ocean—an inorganic bridge. Third assessment report of climate change. University Press

    Google Scholar 

  39. Intergovernmental Panel on Climate Change (IPCC) (2006a) IPCC guidelines for national greenhouse gas Inventories. Waste. vol 5. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html. Accessed 15 July 2020

  40. Intergovernmental Panel on Climate Change (IPCC) (2006b) IPCC guidelines for national greenhouse gas Inventories. Stationary Combustion, vol 2. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2Volume2/V22Ch2_Stationary_Combustion.pdf. Accessed 15 July 2020

  41. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: Synthesis Report. https://www.ipcc.ch/report/ar4/syr/. Accessed 20 July 2020

  42. Intergovernmental Panel on Climate Change (IPCC) (2014) Global Warming Potential Values. IPCC Fifth Assessment Report, 2014 (AR5). https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf. Accessed 02 July 2020

  43. Intergovernmental Panel on Climate Change (IPCC) (2018) Summary for policymakers in global warming of 1.5°C: an IPCC special report on the impacts of global warming of 1.5°C above Pre-industrial levels and related global greenhouse gas emission pathways. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR et al (eds) Strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, p 32

    Google Scholar 

  44. Intergovernmental Panel on Climate Change (IPCC) (2019a) Climate change and land: an IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf. Accessed 29 June 2020

  45. Intergovernmental Panel on Climate Change (IPCC) (2019b) The 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories waste generation, composition and management data. Vol 5: Waste. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/. Accessed 15 July 2020

  46. International Energy Agency (IEA) (2019a) Global Energy & CO2 Status Report 2019. International Energy Agency, Paris. https://www.iea.org/reports/global-energy-co2-status-report-2019. Accessed 6 July 2020

  47. International Energy Agency (IEA) (2019b) https://www.ucsusa.org/resources/each-countrys-share-co2-emissions. Accessed 29 June 2020

  48. International Organization for Standardization (ISO) 14040 (2006) Environmental management—life cycle assessment—principles and framework. Switzerland, Geneva

    Google Scholar 

  49. International Organization for Standardization (ISO) 14044 (2006) Environmental management—life cycle assessment—requirements and guidelines. Switzerland, Geneva

    Google Scholar 

  50. Iqbal MK (2018) Composing of municipal solid waste and its use as fertilizer. Soil Productivity Enhancement, 35–55. https://doi.org/10.5772/intechopen.81729

  51. Johari A, Alkali H, Hashim H, Ahmed SI, Mat R (2014) Municipal solid waste management and potential revenue from recycling in Malaysia. Modern Appl Sci 8(4):37

    Article  Google Scholar 

  52. John NM, Edem SO, Ndaeyo NU, Ndon BA (2006) Physical composition of municipal solid waste and nutrient contents of its organic component in Uyo municipality, Nigeria. J Plant Nutr 29(2):189–194

    Article  CAS  Google Scholar 

  53. Krause MJ (2018) A dissertation presented to the graduate school of the University Of Florida in partial fulfillment of the requirements for the degree of doctor of philosophy University of Florida 2016. https://ufdc.ufl.edu/UFE0050208/00001. Accessed 22 July 2020

  54. Kristanto GA, Koven W (2020) Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City Environ Interact 4(100027)

    Google Scholar 

  55. Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Christensen TH (2014) Review of LCA studies of solid waste management systems–Part I: Lessons learned and perspectives. Waste Manag 34(3):573–588

    Google Scholar 

  56. Lee S, Kim J, Chong WK (2016) The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States. Waste Manag 56:593–599

    Article  CAS  Google Scholar 

  57. Lee U, Han J, Wang M (2017) Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J Clean Prod 166:335–342

    Article  CAS  Google Scholar 

  58. Liu Y, Sun W, Liu J (2017) Greenhouse gas emissions from different municipal solid waste management scenarios in China: based on carbon and energy flow analysis. Waste Manag 68:653–661

    Article  CAS  Google Scholar 

  59. Ma S, Zhou C, Chi C, Liu Y, Yang G (2020) Estimating physical composition of municipal solid waste in China by applying artificial neural network method. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c01802

    Article  Google Scholar 

  60. Manfredi S, Tonini D, Christensen TH, Scharff H (2009) Landfilling of waste: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):825–836

    Article  CAS  Google Scholar 

  61. Maria FD, Sisani F (2017) Greenhouse gas emissions and environmental impact from recycling the organic fraction of solid waste: comparison of different treatment schemes from a life cycle perspective. Recycling 2(3):13

    Article  Google Scholar 

  62. Mendes MR (2004) Comparison of the environmental impact of incineration and landfilling in Sao Paulo city as determined by LCA Resource, conservation and recycle journal

    Google Scholar 

  63. Meng L, Roulet N, Zhuang Q, Christensen TR, Frolking S (2016) Focus on the impact of climate change on wetland ecosystems and carbon dynamics. Environ Res Lett 11(10):100201

    Article  Google Scholar 

  64. Metz B, Davidson O, Bosch P, Dave R, Meyer L (2007) Climate change 2007: mitigation of climate change. Cambridge University Press

    Google Scholar 

  65. Nandan A, Yadav BP, Baksi S, Bose D (2017) Recent scenario of solid waste management in India. World Sci News 66:56–74

    CAS  Google Scholar 

  66. National Oceanic and Atmospheric Administration (NOAA) (2019).Department National Oceanic and Atmospheric Administration, United States. https://www.noaa.gov/climate. Accessed 20 July 2020

  67. Organisation for Economic Co-operation and Development (OECD) (2009) OECD fact book: economic, environmental and social statistics. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  68. Palanivel TM, Sulaiman H (2014) Generation and composition of municipal solid waste (MSW) in Muscat, Sultanate of Oman. APCBEE Procedia 10(2014):96–102

    Article  CAS  Google Scholar 

  69. Pimenteira CAP, Pereira AS, Oliveira LB, Rosa LP, Reis MM, Henriques RM (2004) Energy conservation and CO2 emission reductions due to recycling in Brazil. Waste Manag 24(9):889–897

    Article  CAS  Google Scholar 

  70. Planning Commission (2014) The final report of the expert group on low carbon strategies for inclusive growth, New Delhi, India

    Google Scholar 

  71. Rahman MA, Alam MS, Al-Amin M (2006) Segregation of biodegradable solid wastes of Chittagong. Pak J Biol Sci 9(3):460–464

    Article  Google Scholar 

  72. Rajcoomar A, Ramjeawon T (2017) Life cycle assessment of municipal solid waste management scenarios on the small island of Mauritius. Waste Manage Res 35(3):313–324

    Article  Google Scholar 

  73. Rupani PF, Maleki Delarestaghi R, Asadi H, Rezania S, Park J, Abbaspour M, Shao W (2019) Current scenario of the Tehran municipal solid waste handling rules towards green technology. Int J Environ Res Public Health 16(6):979

    Article  CAS  Google Scholar 

  74. Sarkar MSI, Bhuyan MS (2018) Analysis of physical and chemical composition of the solid waste in Chittagong city. J Ind Pollut Control 34(1):1984–1990

    CAS  Google Scholar 

  75. Scarlat N, Motola V, Dallemand JF, Monforti-Ferrario F, Mofor L (2015) Evaluation of energy potential of municipal solid waste from African urban areas. Renew Sustain Energy Rev 50:1269–1286

    Article  Google Scholar 

  76. Sharma A, Gupta AK, Ganguly R (2018) Impact of open dumping of municipal solid waste on soil properties in mountainous region. J Rock Mech Geotech Eng 10(4):725–739

    Article  Google Scholar 

  77. Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil, Sediment Water 3(2):13

    Google Scholar 

  78. Silpa K, Yao L, Tata PB, Van Woerden F (2018). What a Waste 2.0: a global snapshot of solid waste management to 2050. Urban Development Series, Washington DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0. https://www.worldbank.org/en/news/press-release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bank-report. Accessed 12 July 2020

  79. Singh J, Kalamdhad AS (2018) Effects of heavy metals on the environment by utilization of urban waste compost for land application: a review. In: Urban ecology, water quality and climate change, pp 329–340. Springer, Cham

    Google Scholar 

  80. Singh RP, Tyagi VV, Allen T, Ibrahim MH, Kothari R (2011) An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew Sustain Energy Rev 15(9):4797–4808

    Article  Google Scholar 

  81. Smith A, Brown K, Ogilvie S, Rushton K, Bates J (2001) Waste management options and climate change—Final Report to the European Commission. http://www.ec.europa.eu/environment/waste/studies/pdf/climate_change.pdf. Accessed 24 July 2020

  82. Soobhany N (2018) Assessing the physicochemical properties and quality parameters during composting of different organic constituents of municipal solid waste. J Environ Chem Eng 6(2):1979–1988

    Article  CAS  Google Scholar 

  83. Srivastava V, De Araujo ASF, Vaish B, Bartelt-Hunt S, Singh P, Singh RP (2016) Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev Environ Sci Bio/Technol 15(4):677–696

    Article  Google Scholar 

  84. The National Aeronautics and Space Administration (NASA) (2019) Global climate change, Vital signs of the planet, Global temperature, Global land-ocean temperature index. NASA Goddard Institute for Space Studies (GISS), Washington DC, United States. https://climate.nasa.gov/vital-signs/globaltemperature. Accessed 09 July 2020

  85. The National Aeronautics and Space Administration (NASA) (2020) Satellite sea level observations. NASA Goddard Space Flight Center. Washington DC, United States. https://climate.nasa.gov/vital-signs/sea-level/. Accessed 09 July 2020

  86. Tiseo I (2020) Greenhouse gas emissions attributable to landfill in the United Kingdom (UK) from 2009 to 2018. https://www.statista.com/statistics/509129/greenhouse-gas-emissions-landfill-in-the-united-kingdom-uk/. Accessed 12 July 2020

  87. Tuprakay SR, Suksabye P, Menchai P, Tuprakay S (2014). The physical and chemical properties of solid waste from water tourism. Case study: Taling Chan Floating Market, Bangkok, Thailand. Waste Management and the Environment VII, 180, 103

    Google Scholar 

  88. Turner DA, Williams ID, Kemp S (2015) Greenhouse gas emission factors for recycling of source-segregated waste materials. Resour Conserv Recycl 105:186–197

    Article  Google Scholar 

  89. United Nations Environment Programme (UNEP) (2010). Waste and climate change–Global trends and strategy framework, Report prepared by the Division of Technology, Industry and Economics – International Environmental Technology Center. http://www.unep.or.jp/ietc/Publications/spc/Waste&ClimateChange/Waste&ClimateChange.pdf. Accessed 24 July 2020

  90. United States Environmental Protection Agency (US EPA) (2018) Inventory of US Greenhouse gas emission (1990–2018). https://reader.elsevier.com/reader/sd/pii/S0959652617317316?token=6CD13DF055931E0DA04310B5CF096AE9459804F73A5E4D3CA9506490D7519876EC66FE79EA23BC93BA0E0E54492210FE. Accessed 20 July 2020

  91. United States Environmental Protection Agency (US EPA) (2019) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2017. EPA 430-R-19-001. Washington, DC: U.S. Environmental Protection Agency. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks. Accessed 15 July 2020

  92. United States Environmental Protection Agency (US EPA). (2020) National overview: facts and figures on materials, wastes and recycling. U.S. Environmental Protection Agency, Washington DC. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials. Accessed 19 July 2020

  93. US EL, Irving B, Martinsen T, Mareckova K (2019). Emissions from waste incineration. https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_3_Waste_Incineration.pdf. Accessed 10 June 2020

  94. Wang D, He J, Tang YT, Higgitt D, Robinson D (2020) Life cycle assessment of municipal solid waste management in Nottingham, England: Past and future perspectives. J Clean Prod 251:119636

    Article  CAS  Google Scholar 

  95. World Bank (2015) http://data.worldbank.org/indicator/EN.ATM.CO2E.PC. Accessed 24 July 2020

  96. Xin C, Zhang T, Tsai SB, Zhai YM, Wang J (2020) An empirical study on greenhouse gas emission calculations under different municipal solid waste management strategies. Appl Sci 10(5):1673

    Article  CAS  Google Scholar 

  97. Yaman C, Anil I, Jaunich MK, Blaisi NI, Alagha O, Yaman AB, Gunday ST (2019) Investigation and modelling of greenhouse gas emissions resulting from waste collection and transport activities. Waste Manag Res 37(12):1282–1290

    Article  CAS  Google Scholar 

  98. Yang R, Xu Z, Chai J (2018) A review of characteristics of landfilled municipal solid waste in several countries: physical composition, Unit Weight, and permeability coefficient. Polish J Environ Stud 27(6)

    Google Scholar 

  99. Yanik T, Aslan I (2018) Impact of global warming on aquatic animals. Pakistan J Zoology 50(1)

    Google Scholar 

  100. Yu Y, Zhang W (2016) Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements. Waste Manag Res 34(4):368–377

    Article  CAS  Google Scholar 

  101. Zhang C, Xu T, Feng H, Chen S (2019) Greenhouse gas emissions from landfills: a review and bibliometric analysis. Sustainability 11(8):2282

    Article  Google Scholar 

  102. Zhou H, Meng A, Long Y, Li Q, Zhang Y (2014) An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renew Sustain Energy Rev 36:107–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Head, Department of Botany, the Coordinator, Interdisciplinary School of Life Sciences and CAS in Botany, Institute of Science, BHU, Varanasi. Meenu Gautam is thankful to the Council of Scientific and Industrial Research (09/013(0857)/2018-EMR-I), New Delhi, for the financial aid in the form of Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, M., Agrawal, M. (2021). Greenhouse Gas Emissions from Municipal Solid Waste Management: A Review of Global Scenario. In: Muthu, S.S. (eds) Carbon Footprint Case Studies. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-9577-6_5

Download citation

Publish with us

Policies and ethics