Skip to main content

Engineering Minds for Biologists

  • Chapter
  • First Online:
Your Passport to a Career in Bioinformatics

Abstract

In the last decades, the advances in data gathering technologies, from high-throughput sequencing to “omics” analyses, has changed the approach to biology. From an engineering point of view, biological research is a “reverse-engineering problem”, where scientists try to unravel the mechanisms that allow and support life in living organisms. Traditionally, biology was approached using a bottom-up approach, where each individual actor (molecules, cells, organs) was individually studied, with the hope of later understanding the functioning of the whole biological system by “assembling” the functionalities of its individual components. Unfortunately, the data gathered in the last decades demonstrated that this is not possible because biological systems are complex systems. Mathematics tells us that to understand a complex system we must understand the relations between the parts. The system as a whole determines how the parts behave. Doing otherwise would be like trying to understand how a flock of birds move by individually studying each bird (Fig. 9.1). In this chapter we discuss how Systems biology is, in our view, the most promising methodological approach to study biological systems, and how an “engineering mind” is necessary to understand, coordinate, and exploit the challenging mix of competences required to tackle their complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A “standard” is certified by a standard certification authority (like IEEE), not defined or “customized” by each individual research group. There are also “de-facto” standards, not officially recognized but widely used in scientific communities. Nevertheless, this does not to be the case in the Life Science community.

References

  • Agarwal, V., Bell, G.W., Nam, J.-W., et al.: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4, e05005 (2015)

    Article  Google Scholar 

  • Alon, U.: Biological networks: the tinkerer as an engineer. Science. 301(5641), 1866–1867 (2003)

    Article  CAS  Google Scholar 

  • Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  CAS  Google Scholar 

  • Bardini, R., Politano, G., Benso, A., et al.: Multi-level and hybrid modelling approaches for systems biology. Comput. Struct. Biotechnol. J. 15, 396–402 (2017a)

    Article  CAS  Google Scholar 

  • Bardini, R., Politano, G., Benso, A., Di Carlo, S.: Multi-level and hybrid modelling approaches for systems biology. Comput. Struct. Biotechnol. J. 15, 396–402 (2017b)

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Cui, Y.: SomamiR 2.0: a database of cancer somatic mutations altering microRNA-ceRNA interactions. Nucleic Acids Res. 44(D1), D1005–D1010 (2016)

    Article  CAS  Google Scholar 

  • Bonzanni, N., Feenstra, K.A., Fokkink, W., et al.: Petri Nets are a Biologist’s Best Friend. Springer, Cham (2014)

    Book  Google Scholar 

  • Calderone, A., Castagnoli, L., Cesareni, G.: Mentha: a resource for browsing integrated protein-interaction networks. Nat. Methods. 10(8), 690–691 (2013)

    Article  CAS  Google Scholar 

  • Chambers, J., Davies, M., Gaulton, A., et al.: UniChem: a unified chemical structure cross-referencing and identifier tracking system. J Cheminform. 5(1), 3 (2013)

    Article  CAS  Google Scholar 

  • Chou, C.-H., Shrestha, S., Yang, C.-D., et al.: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46(D1), D296–D302 (2018)

    Article  CAS  Google Scholar 

  • Degenring, D., Rohl, M., Uhrmacher, A.M.: Discrete event, multi-level simulation of metabolite channeling. Biosystems. 75(1–3), 29–41 (2004)

    Article  CAS  Google Scholar 

  • Du, J., Yuan, Z., Ma, Z., et al.: KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a PATH analysis model. Mol. BioSyst. 10(9), 2441–2447 (2014)

    Article  CAS  Google Scholar 

  • Emmert-Streib, F., Glazko, G.V.: Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput. Biol. 7(5), e1002053 (2011)

    Article  CAS  Google Scholar 

  • Fortuna, I., Perrone, G.C., Krug, M.S., et al.: CompuCell3D simulations reproduce mesenchymal cell migration on flat substrates. Biophys. J. 118, 2801 (2020)

    Article  CAS  Google Scholar 

  • Gorochowski, T.E.: Agent-based modelling in synthetic biology. Essays Biochem. 60(4), 325–336 (2016)

    Article  Google Scholar 

  • Heiner, M., Gilbert, D.: How Might Petri Nets Enhance your Systems Biology Toolkit. Springer Berlin Heidelberg, Berlin (2011)

    Book  Google Scholar 

  • Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. Springer Berlin Heidelberg, Berlin (2008)

    Book  Google Scholar 

  • Hinske, L.C.G., Galante, P.A.F., Kuo, W.P., et al.: A potential role for intragenic miRNAs on their hosts’ interactome. BMC Genomics. 11, 533 (2010)

    Article  Google Scholar 

  • Jasim Mohammed, M., Ibrahim, R.W., Ahmad, M.Z.: Periodicity computation of generalized mathematical biology problems involving delay differential equations. Saudi J. Biol. Sci. 24(3), 737–740 (2017)

    Article  CAS  Google Scholar 

  • Kaplan, S., Bren, A., Dekel, E., et al.: The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol. Syst. Biol. 4, 203 (2008)

    Article  Google Scholar 

  • Konagurthu, A.S., Lesk, A.M.: Single and multiple input modules in regulatory networks. Proteins. 73(2), 320–324 (2008)

    Article  CAS  Google Scholar 

  • Loewe, L., Hillston, J.: Computational models in systems biology. Genome Biol. 9(12), 328 (2008)

    Article  Google Scholar 

  • Mathelier, A., Zhao, X., Zhang, A.W., et al.: JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42(Database issue), D142–D147 (2014)

    Article  CAS  Google Scholar 

  • Maus, C., Rybacki, S., Uhrmacher, A.M.: Rule-based multi-level modeling of cell biological systems. BMC Syst. Biol. 5, 166 (2011)

    Article  Google Scholar 

  • North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1), 1–25 (2006)

    Article  Google Scholar 

  • Politano, G., Benso, A., Savino, A., et al.: ReNE: a cytoscape plugin for regulatory network enhancement. PLoS One. 9(12), e115585 (2014)

    Article  Google Scholar 

  • Politano, G., Orso, F., Raimo, M., et al.: CyTRANSFINDER: a Cytoscape 3.3 plugin for three-component (TF, gene, miRNA) signal transduction pathway construction. BMC Bioinformatics. 17, 157 (2016)

    Article  Google Scholar 

  • Politano, G., Di Carlo, S., Benso, A.: ‘One DB to rule them all’-the RING: a Regulatory INteraction Graph combining TFs, genes/proteins, SNPs, diseases and drugs. Database (Oxford). 2019, baz108 (2019)

    Article  Google Scholar 

  • Razick, S., Magklaras, G., Donaldson, I.M.: iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics. 9, 405–405 (2008)

    Article  Google Scholar 

  • Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In Pac Symp Biocomput. p. 459–470 (2001)

    Google Scholar 

  • Schaefer, U., Schmeier, S., Bajic, V.B.: TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins. Nucleic Acids Res. 39(Database issue), D106–D110 (2011)

    Article  CAS  Google Scholar 

  • Suzuki, Y., Asai, Y., Oka, H., et al.: A platform for in silico modeling of physiological systems III. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 2803–2806 (2009)

    Google Scholar 

  • Szklarczyk, D., Franceschini, A., Wyder, S., et al.: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database issue), D447–D452 (2015)

    Article  CAS  Google Scholar 

  • Valk, R.: Object petri nets: using the nets-within-nets paradigm. In Lectures on Concurrency and Petri Nets (2003)

    Google Scholar 

  • Wu, G., Feng, X., Stein, L.: A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 11(5), R53 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Benso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benso, A., Di Carlo, S., Politano, G. (2021). Engineering Minds for Biologists. In: Suravajhala, P.N. (eds) Your Passport to a Career in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-15-9544-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9544-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9543-1

  • Online ISBN: 978-981-15-9544-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics