Skip to main content

Graphene Reinforced PVA Nanocomposites and Their Applications

  • Chapter
  • First Online:
Graphene Based Biopolymer Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 429 Accesses

Abstract

Graphene reinforced poly (vinyl alcohol) (PVA) nanocomposites are fast emerging materials due to their fascinating properties such as their morphology, excellent mechanical, optical and thermal properties. In this present chapter, different synthesis approaches and physical properties of these nanocomposites will be discussed in detail. In addition to this, various potential applications of these nanocomposites will be discussed. These applications include food packaging, biomedical, sensors, energy storage devices, safety glasses etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adetayo A, Runsewe D (2019) Synthesis and fabrication of graphene and graphene oxide: a review. Open J Compos Mater 9:207–229. https://doi.org/10.4236/ojcm.2019.92012

  2. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS 4:4806–4814. https://doi.org/10.1021/nn1006368

  3. Eletskii AV, Iskandarova IM, Knizhnik AA, Krasikov DN (2011) Graphene: fabrication methods and thermophysical properties. Phys Usp 54:227–258. https://doi.org/10.3367/ufne.0181.201103a.0233

    Article  CAS  Google Scholar 

  4. Own SY, Me N (2011) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomed 6:3443–3448. https://doi.org/10.2147/IJN:s26812

  5. Yu H, Zha B, Chaoke B, Li R, Xing R (2016) High-efficient synthesis of graphene oxide based on improved hummers method. Nature 6:36143. https://doi.org/10.1038/srep36143

  6. Kovtyukhova NI (1999) Layer-by-layer assembly of ultrathin composite films from micronsized graphite oxide sheets and polycations. Chem Mater 11:771–778. https://doi.org/10.1021/cm981085u

    Article  CAS  Google Scholar 

  7. Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:1–9. https://doi.org/10.1038/ncomms6716

    Article  CAS  Google Scholar 

  8. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon N Y 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  9. Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

  10. Staudenmaier L (1898) Method for the preparation of the graphite acid. Eur J Inorg Chem 31:1481–1487

    CAS  Google Scholar 

  11. Chen J, Li Y, Huang L, Li C, Shi G (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon N Y 81:826–834. https://doi.org/10.1016/j.carbon.2014.10.033

    Article  CAS  Google Scholar 

  12. Su C, Xu Y, Zhang W, Zhao J, Tang X, Tsai C, Li L (2009) Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. 5674–5680. https://doi.org/10.1021/cm902182y

  13. Rosillo-lopez M, Salzmann CG (2016) A simple and mild chemical oxidation route to high-purity nano-graphene oxide. Carbon N Y 106:56–63. https://doi.org/10.1016/j.carbon.2016.05.022

    Article  CAS  Google Scholar 

  14. Brodie BC (1860) XXIII.—Researches on the atomic weight of graphite. Quart J Chem Soc London 12(1):261–268. https://doi.org/10.1098/rspl.1859.0007

  15. Ranjan P, Agrawal S, Sinha A, Rao TR, Balakrishnan J, Thakur AD (2018) A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-30613-4

    Article  CAS  Google Scholar 

  16. Shahriary L, Athawale A (2014) Graphene oxide synthesized by using modified Hummers approach. Int J Renew Energy Environ Eng 02:58–63

    Google Scholar 

  17. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520. https://doi.org/10.1021/cm901247t

    Article  CAS  Google Scholar 

  18. Dong X, Huang W, Chen P (2011) In situ synthesis of reduced graphene oxide and gold nanocomposites for nanoelectronics and biosensing. Nanoscale Res Lett 6(1):1–6. https://doi.org/10.1007/s11671-010-9806-8

  19. Huang K, Zhang J, Liu Y, Liu Y (2015) Science direct synthesis of reduced graphene oxide wrapped—copper sulfide hollow spheres as electrode material for supercapacitor. Int J Hydrogen Energy 1–10. https://doi.org/10.1016/j.ijhydene.2015.05.152

  20. Haghighi B, Tabrizi MA (2013) Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Adv 3(3):13365–13371. https://doi.org/10.1039/c3ra40856f

  21. Shen J, Li T Long Y, Shi M, Li N, Ye M (2012) One-step solid state preparation of reduced graphene oxide. Carbon 50:2134–2140. https://doi.org/10.1016/j.carbon.2012.01.019

  22. Habte AT, Ayele DW (2019) Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters. Adv Mater Sci Eng 2019:9. https://doi.org/10.1155/2019/5058163

  23. Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compd 684:254–260. https://doi.org/10.1016/j.jallcom.2016.05.162

    Article  CAS  Google Scholar 

  24. Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822. https://doi.org/10.1002/pi.3025

    Article  CAS  Google Scholar 

  25. Komarneni S (1992) Nanocornposites. 2:1219–1230

    CAS  Google Scholar 

  26. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  27. Sharma B, Shekhar S, Gautam S, Sarkar A, Jain P (2018) Nanomechanical analysis of chemically reduced graphene oxide reinforced poly (vinyl alcohol) nanocomposite thin films. Polym Test 70:458–466. https://doi.org/10.1016/j.polymertesting.2018.07.028

    Article  CAS  Google Scholar 

  28. Yuan X (2011) Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene. Polym Bull 67:1785–1797. https://doi.org/10.1007/s00289-011-0506-z

    Article  CAS  Google Scholar 

  29. Guo J, Ren L, Wang R, Zhang C, Yang Y, Liu T (2011) Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite. Compos Part B Eng 42:2130–2135. https://doi.org/10.1016/j.compositesb.2011.05.008

    Article  CAS  Google Scholar 

  30. Sellam C, Zhai Z, Zahabi H, Picot OT, Deng H, Fu Q, Bilotti E, Peijs T (2015) High mechanical reinforcing efficiency of layered poly(vinyl alcohol)–graphene oxide nanocomposites. Nanocomposites 1:89–95. https://doi.org/10.1179/2055033215Y.0000000001

    Article  CAS  Google Scholar 

  31. Zhou T, Chen F, Tang C, Bai H, Zhang Q, Deng H, Fu Q (2011) The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Compos Sci Technol 71:1266–1270. https://doi.org/10.1016/j.compscitech.2011.04.016

    Article  CAS  Google Scholar 

  32. Zhou TN, Qi XD, Fu Q (2013) The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. Express Polym Lett 7:747–755. https://doi.org/10.3144/expresspolymlett.2013.72

    Article  CAS  Google Scholar 

  33. Goumri M, Venturini JW, Bakour A, Khenfouch M, Baitoul M (2016) Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA. Appl Phys a Mater Sci Process 122:1–8. https://doi.org/10.1007/s00339-016-9725-3

    Article  CAS  Google Scholar 

  34. Muralidharan MN, Mathew S, Seema A, Radhakrishnan P, Kurian T (2016) Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites. Mater Chem Phys 171:367–373. https://doi.org/10.1016/j.matchemphys.2016.01.030

    Article  CAS  Google Scholar 

  35. Thangamani JG, Deshmukh K, Sadasivuni KK (2017) White graphene reinforced polypyrrole and poly(vinyl alcohol) blend nanocomposites as chemoresistive sensors for room temperature detection of liquid petroleum gases. Microchim Acta 184(10):3977–3987. https://doi.org/10.1007/s00604-017-2402-1

  36. Hwang S, Kang D, Ruoff RS, Shin HS. Polyvinyl alcohol reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. 1–4

    Google Scholar 

  37. Wang Y, Shen C, Lou W, Shentu F (2016) Fiber optic humidity sensor based on the graphene oxide/PVA composite fi lm. Opt Commun 372:229–234. https://doi.org/10.1016/j.optcom.2016.04.030

    Article  CAS  Google Scholar 

  38. Deshmukh K, Ahamed MB, Sadasivuni KK (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res. https://doi.org/10.1007/s10965-016-1056-8

    Article  Google Scholar 

  39. Jose J, Al-harthi MA, Alma MA, Dakua JB, De SK (2015) Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend. 41827:1–8 . https://doi.org/10.1002/app.41827

  40. Chen J, Li Y, Zhang Y, Zhu Y (2015) Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker. J Appl Polym Sci 132(22). https://doi.org/10.1002/app.42000

  41. Yang X, Shang S, Li L (2011) Layer-structured poly (vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120:1355–1360. https://doi.org/10.1002/app

  42. He Y, Wang X, Wu D, Gong Q, Qiu H, Liu Y, Wu T, Ma J, Gao J (2013) Biodegradable amylose films reinforced by graphene oxide and polyvinyl alcohol. 142:1–11. https://doi.org/10.1016/j.matchemphys.2013.05.036

  43. Cao Y, Wei W, Liu J, You Q, Liu F, Lan Q, Zhang C, Liu C, Zhao J (2015) The preparation of graphene reinforced poly(vinyl alcohol) antibacterial nanocomposite thin film. Int J Polym Sci 2015:7. https://doi.org/10.1155/2015/407043

  44. Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance Jingchao Wanga, Xianbao Wanga, b,∗, Chunhui Xua, Min Zhanga. 816–822. https://doi.org/10.1002/pi.3025

  45. Liu L, Gao Y, Liu Q, Kuang J, Zhou D, Ju S, Han B (2013) High mechanical performance of layered graphene oxide/poly (vinyl alcohol) nanocomposite films. 2466–2472. https://doi.org/10.1002/smll.201300819

  46. Jankovic A, Mitric M, Matic I, Juranic ZD, Rhee KY, Jin S, Ljiljana Z, Hui D (2016) The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites. J Ind Eng Chem 34:250–257. https://doi.org/10.1016/j.jiec.2015.11.016

  47. Hajeeassa KS, Hussein MA, Anwar Y, Tashkandi NY, Al-amshany ZM (2018) Nanocomposites containing polyvinyl alcohol and reinforced carbon-based nanofiller: a super effective biologically active material. 5:1–12. https://doi.org/10.1177/1849543518794818

  48. Usman A, Hussain Z, Riaz A, Khan AN (2016) Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym 153:592–599. https://doi.org/10.1016/j.carbpol.2016.08.026

    Article  CAS  Google Scholar 

  49. Shuai C, Feng P, Gao C, Shuai X (2015) RSC Advances nanocomposite sca ff olds for tissue engineering. RSC Adv 5:25416–25423. https://doi.org/10.1039/C4RA16702C

    Article  CAS  Google Scholar 

  50. Morimune S, Nishino T, Goto T (2012) Poly (vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J 44(10):1056–1063. https://doi.org/10.1038/pj.2012.58621

  51. Hajian M, Reisi MR (2012) Preparation and characterization of polyvinylbutyral/graphene nanocomposite. J Polym Res 19(10):9966. https://doi.org/10.1007/s10965-012-9966-6623

  52. Compton OC, Cranford SW, Putz KW, An Z, Brinson LC, Buehler MJ, Nguyen ST (2019) Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS nano 6(3):2008–2019. https://doi.org/10.6261021/nn202928w627

  53. Dave HK, Nath K (2016) Journal of Water Process Engineering Graphene oxide incorporated novel polyvinyl alcohol composite membrane for pervaporative recovery of acetic acid from vinegar wastewater. J Water Process Eng 14:124–134. https://doi.org/10.1016/j.jwpe.2016.11.002

    Article  Google Scholar 

Download references

Acknowledgements

Hafeez Anwar acknowledges funding of Pakistan science foundation under Project No: PSF-NSF/ENG/P-UAF (05) and funding from higher education commission, Pakistan for national research program for university (NRPU), Project number 8545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafeez Anwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anwar, H., Haseeb, M., Khalid, M., Yunas, K. (2021). Graphene Reinforced PVA Nanocomposites and Their Applications. In: Sharma, B., Jain, P. (eds) Graphene Based Biopolymer Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-15-9180-8_6

Download citation

Publish with us

Policies and ethics