Skip to main content

Graphene Functionalized PLA Nanocomposites and Their Biomedical Applications

  • Chapter
  • First Online:
Graphene Based Biopolymer Nanocomposites

Abstract

Nanocomposites have been emerged a major class of materials mainly due to providing multifunctional properties in a single system. Graphene is a 2-dimensional carbon-based material and has applications in many fields due to their extraordinary properties. Polylactic acid (PLA) is a biopolymer with huge scope in the biomedical field and especially in bio-engineering but has limitations due to low crystallization and week thermal and mechanical properties. Recently, Graphene-PLA based nanocomposites are investigated to overcome constraints faced by PLA polymer materials, especially for biomedical engineering. These nanocomposites have improved crystallization of PLA polymers and also enhanced mechanical strength of the polymer required for preparing different artificial organs such as tissues, bones etc. In this book chapter, a brief discussion is made on PLA and graphene, then synthesis methods for graphene composites and their functionalization on the graphene surface. Finally, biomedical applications of Graphene functionalized PLA nanocomposites have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101(22):8493–8501

    Article  CAS  Google Scholar 

  2. Dedenaro G, Costa S, Rugiero I, Pedrini P, Tamburini E (2016) Valorization of agri-food waste via fermentation: production of L-lactic acid as a building block for the synthesis of biopolymers. Appl Sci 6(12):379

    Article  CAS  Google Scholar 

  3. Ajioka M, Enomoto K, Suzuki K, Yamaguchi A (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68(8):2125–2131

    Article  CAS  Google Scholar 

  4. Sha L, Chen Z, Chen Z, Zhang A, Yang Z (2016) Polylactic acid based nanocomposites: promising safe and biodegradable materials in biomedical field. Int J Polymer Sci 2016.

    Google Scholar 

  5. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163

    Article  Google Scholar 

  6. Lee HH, Sang Shin U, Lee JH, Kim HW (2011) Biomedical nanocomposites of poly (lactic acid) and calcium phosphate hybridized with modified carbon nanotubes for hard tissue implants. J Biomed Mater Res B Appl Biomater 98(2):246–254

    Article  CAS  Google Scholar 

  7. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 81(7):1119–1129

    CAS  Google Scholar 

  8. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328

    Article  CAS  Google Scholar 

  9. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-Lactic Acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  Google Scholar 

  10. Marques P, Gonçalves G, Cruz S, Almeida N, Singh M, Grácio J, Sousa A (2011) Functionalized graphene nanocomposites. Adv Nanocompos Technol 11:247–272

    Google Scholar 

  11. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150

    Article  CAS  Google Scholar 

  12. Ushio S, Yoshii A, Tamai N, Ohtani N, Kaneko T (2011) Wide-range temperature dependence of epitaxial graphene growth on 4H-SiC (0 0 0–1): A study of ridge structures formation dynamics associated with temperature. J Cryst Growth 318(1):590–594

    Article  CAS  Google Scholar 

  13. Janowska I, Ersen O, Jacob T, Vennégues P, Bégin D, Ledoux M-J, Pham-Huu C (2009) Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl Catal A 371(1–2):22–30

    Article  CAS  Google Scholar 

  14. Eswaraiah V, Jyothirmayee Aravind S, Balasubramaniam K, Ramaprabhu S (2013) Graphene-functionalized carbon nanotubes for conducting polymer nanocomposites and their improved strain sensing properties. Macromol Chem Phys 214(21):2439–2444

    Article  CAS  Google Scholar 

  15. Feng X, Wang X, Cai W, Qiu S, Hu Y, Liew KM (2016) Studies on synthesis of electrochemically exfoliated functionalized graphene and polylactic acid/ferric phytate functionalized graphene nanocomposites as new fire hazard suppression materials. ACS Appl Mater Interfaces 8(38):25552–25562

    Article  CAS  Google Scholar 

  16. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102

    Article  CAS  Google Scholar 

  17. Valantin M-A, Aubron-Olivier C, Ghosn J, Laglenne E, Pauchard M, Schoen H, Bousquet R, Katz P, Costagliola D, Katlama C (2003) Polylactic acid implants (New-Fill)® to correct facial lipoatrophy in HIV-infected patients: results of the open-label study VEGA. Aids 17(17):2471–2477

    Article  CAS  Google Scholar 

  18. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT (2016) Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 107:247–276

    Article  CAS  Google Scholar 

  19. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  Google Scholar 

  20. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101

    Article  CAS  Google Scholar 

  21. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  22. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    Article  CAS  Google Scholar 

  23. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15):6050–6055

    Article  CAS  Google Scholar 

  24. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    Article  CAS  Google Scholar 

  25. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    Article  CAS  Google Scholar 

  26. Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam J-M (2011) UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano 5(12):9799–9806

    Article  CAS  Google Scholar 

  27. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542

    Article  CAS  Google Scholar 

  28. Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21(35):13290–13298

    Article  CAS  Google Scholar 

  29. Grayfer ED, Makotchenko VG, Nazarov AS, Kim S-J, Fedorov VE (2011) Graphene: chemical approaches to the synthesis and modification. Russ Chem Rev 80(8):751

    Article  CAS  Google Scholar 

  30. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9(10):3460–3462

    Article  CAS  Google Scholar 

  31. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845

    Google Scholar 

  32. Niyogi S, Bekyarova E, Itkis ME, Zhang H, Shepperd K, Hicks J, Sprinkle M, Berger C, Lau CN, Deheer WA (2010) Spectroscopy of covalently functionalized graphene. Nano Lett 10(10):4061–4066

    Article  CAS  Google Scholar 

  33. Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X (2019) Graphene-based nanocomposites for neural tissue engineering. Molecules 24(4):658

    Article  CAS  Google Scholar 

  34. Feng S-H, Li G-H (2017) Hydrothermal and solvothermal syntheses. In: Modern inorganic synthetic chemistry. Elsevier, Amsterdam, pp 73–104

    Google Scholar 

  35. Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO 2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3(10):701–705

    Article  CAS  Google Scholar 

  36. Srivastava M, Das AK, Khanra P, Kim NH, Lee JH (2013) A facile one-step hydrothermal synthesis of graphene/CeO2 nanocomposite and its catalytic properties. In: Advanced materials research, 2013. Trans Tech Publications, pp 242–245

    Google Scholar 

  37. Pu N-W, Chen C-Y, Qiu H-X, Liu Y-M, Song C-H, Lin M-H, Ger M-D (2018) Hydrothermal synthesis of N-doped graphene/Fe2O3 nanocomposite for supercapacitors. Int J Electrochem Sci 13:6812–6823

    Article  CAS  Google Scholar 

  38. Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H (2013) Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl Mater Interfaces 5(24):12928–12934

    Article  CAS  Google Scholar 

  39. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4(1):30

    Article  CAS  Google Scholar 

  40. Li Y, Qian Y, Liao H, Ding Y, Yang L, Xu C, Li F, Zhou G (1998) A reduction-pyrolysis-catalysis synthesis of diamond. Science 281(5374):246–247

    Article  CAS  Google Scholar 

  41. Jiang Y, Wu Y, Zhang S, Xu C, Yu W, Xie Y, Qian Y (2000) A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J Am Chem Soc 122(49):12383–12384

    Article  CAS  Google Scholar 

  42. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W-X, Fu Q, Ma X, Xue Q (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193

    Article  CAS  Google Scholar 

  43. Yang J, Zang C, Sun L, Zhao N, Cheng X (2011) Synthesis of graphene/Ag nanocomposite with good dispersibility and electroconductibility via solvothermal method. Mater Chem Phys 129(1–2):270–274

    Article  CAS  Google Scholar 

  44. Lin-jun H, Yan-xin W, Jian-guo T, Hui-min W, Hai-bin W, Jian-xiu Q, Yao W, Ji-xian L, Jing-quan L (2012) Synthesis of graphene/metal nanocomposite film with good dispersibility via solvothermal method. Int J Electrochem Sci 7:11068–11075

    Google Scholar 

  45. Hu C, Chen F, Lu T, Lian C, Zheng S, Zhang R (2014) Aqueous production of TiO2–graphene nanocomposites by a combination of electrostatic attraction and hydrothermal process. Mater Lett 121:209–211

    Article  CAS  Google Scholar 

  46. Abdel-Karim R (2016) Electrochemical synthesis of nanocomposites. Electrodeposition of Composite Materials, p 1

    Google Scholar 

  47. Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2):307–312

    Google Scholar 

  48. Chengzhou Z, Shaojun G, Youxing F, Lei H, Erkang W, Shaojun D (2011) One-step electrochemical approach to the synthesis of Graphene. MnO 2:648–657

    Google Scholar 

  49. Gao H, Xiao F, Ching CB, Duan H (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces 3(8):3049–3057

    Article  CAS  Google Scholar 

  50. Xie G, Forslund M, Pan J (2014) Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Appl Mater Interfaces 6(10):7444–7455

    Article  CAS  Google Scholar 

  51. Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484(4):247–253

    Article  CAS  Google Scholar 

  52. Mohan S, Abraham J, Oluwafemi OS, Kalarikkal N, Thomas S (2016) Rheology and processing of inorganic nanomaterials and quantum dots/polymer nanocomposites. Rheol Process Polymer Nanocompos 355–382

    Google Scholar 

  53. Zeng X, Teng J, Yu J-g, Tan A-s, Fu D-f, Zhang H (2018) Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. Int J Minerals Metallur Mate 25(1):102–109

    Article  CAS  Google Scholar 

  54. Williarris G, Seger B, Kamat P (2008) TiO2-graphene nanocomposites. UV-Assist Photocatal Reduct Graphene Oxide ACS Nano 2:1487

    Google Scholar 

  55. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220

    Article  CAS  Google Scholar 

  56. Delogu F, Gorrasi G, Sorrentino A (2017) Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog Mater Sci 86:75–126

    Article  CAS  Google Scholar 

  57. Wei Z-B, Zhao Y, Wang C, Kuga S, Huang Y, Wu M (2018) Antistatic PVC-graphene composite through plasticizer-mediated exfoliation of graphite. Chin J Polym Sci 36(12):1361–1367

    Article  CAS  Google Scholar 

  58. Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X (2011) Size effect of graphene on electrocatalytic activation of oxygen. Chem Commun 47(36):10016–10018

    Article  CAS  Google Scholar 

  59. Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P (2015) A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv 1(11):e1500462

    Article  Google Scholar 

  60. He T, Li J, Wang L, Zhu J, Jiang W (2009) Preparation and consolidation of alumina/graphene composite powders. Mater Trans 50(4):749–751

    Article  CAS  Google Scholar 

  61. Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528(27):7933–7937

    Article  CAS  Google Scholar 

  62. Bastwros M, Kim G-Y, Zhu C, Zhang K, Wang S, Tang X, Wang X (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos B Eng 60:111–118

    Article  CAS  Google Scholar 

  63. Zhai W, Shi X, Yao J, Ibrahim AMM, Xu Z, Zhu Q, Xiao Y, Chen L, Zhang Q (2015) Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites. Compos B Eng 70:149–155

    Article  CAS  Google Scholar 

  64. Yue H, Yao L, Gao X, Zhang S, Guo E, Zhang H, Lin X, Wang B (2017) Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites. J Alloy Compd 691:755–762

    Article  CAS  Google Scholar 

  65. Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF (2018) Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol 16(1):75

    Article  CAS  Google Scholar 

  66. Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9(1):66

    Article  Google Scholar 

  67. Martou G, Antonyshyn M (2011) Advances in surgical approaches to the upper facial skeleton. Curr Opin Otolaryngol Head Neck Surg 19(4):242–247

    Article  Google Scholar 

  68. Schwach G, Vert M (1999) In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction. Int J Biol Macromol 25(1–3):283–291

    Article  CAS  Google Scholar 

  69. Santos Jr AR (2010) Bioresorbable polymers for tissue engineering. In: Eberli D (ed) Tissue engineering, pp 225–246

    Google Scholar 

  70. Gong M, Zhao Q, Dai L, Li Y, Jiang T (2017) Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties. J Asian Ceramic Soc 5(2):160–168

    Article  Google Scholar 

  71. Wu D, Cheng Y, Feng S, Yao Z, Zhang M (2013) Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res 52(20):6731–6739

    Article  CAS  Google Scholar 

  72. Marques PA, Gonçalves G, Singh MK, Grácio J (2012) Graphene oxide and hydroxyapatite as fillers of polylactic acid nanocomposites: preparation and characterization. J Nanosci Nanotechnol 12(8):6686–6692

    Article  CAS  Google Scholar 

  73. Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J, Guo Y, Hu Y (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22(13):6088–6096

    Article  CAS  Google Scholar 

  74. Nieto A, Dua R, Zhang C, Boesl B, Ramaswamy S, Agarwal A (2015) Three dimensional graphene foam/polymer hybrid as a high strength biocompatible scaffold. Adv Func Mater 25(25):3916–3924

    Article  CAS  Google Scholar 

  75. Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC (2017) 3D printing biocompatible polyurethane/poly (lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl Mater Interfaces 9(4):4015–4023

    Article  CAS  Google Scholar 

  76. Ardjomandi N, Henrich A, Huth J, Klein C, Schweizer E, Scheideler L, Rupp F, Reinert S, Alexander D (2015) Coating of ß-tricalcium phosphate scaffolds—a comparison between graphene oxide and poly-lactic-co-glycolic acid. Biomed Mater 10(4):045018

    Article  CAS  Google Scholar 

  77. Haugen H, Will J, Fuchs W, Wintermantel E (2006) A novel processing method for injection-molded polyether–urethane scaffolds. Part 1: Processing. J Biomed Mater Res Part B Appl Biomater Off J Soc Biomater Jpn Soc Biomater Austral Soc Biomat Korean Soc Biomater 77 (1):65–72

    Google Scholar 

  78. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15):2603–2610

    Article  CAS  Google Scholar 

  79. Qiao X, Russell SJ, Yang X, Tronci G, Wood DJ (2015) Compositional and in vitro evaluation of nonwoven type I collagen/poly-dl-lactic acid scaffolds for bone regeneration. J Funct Biomater 6(3):667–686

    Article  CAS  Google Scholar 

  80. Shin YC, Lee JH, Jin L, Kim MJ, Kim Y-J, Hyun JK, Jung T-G, Hong SW, Han D-W (2015) Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnol 13(1):21

    Article  CAS  Google Scholar 

  81. Ziabari M, Mottaghitalab V, Haghi AK (2010) A new approach for optimization of electrospun nanofiber formation process. Korean J Chem Eng 27(1):340–354

    Article  CAS  Google Scholar 

  82. Shim J-H, Won J-Y, Sung S-J, Lim D-H, Yun W-S, Jeon Y-C, Huh J-B (2015) Comparative efficacies of a 3D-printed PCL/PLGA/β-TCP membrane and a titanium membrane for guided bone regeneration in beagle dogs. Polymers 7(10):2061–2077

    Article  CAS  Google Scholar 

  83. Davachi SM, Kaffashi B, Zamanian A, Torabinejad B, Ziaeirad Z (2016) Investigating composite systems based on poly l-lactide and poly l-lactide/triclosan nanoparticles for tissue engineering and medical applications. Mater Sci Eng C 58:294–309

    Article  CAS  Google Scholar 

  84. Shafiq M, Jung Y, Kim SH (2015) Stem cell recruitment, angiogenesis, and tissue regeneration in substance P-conjugated poly (l-lactide-co-ɛ-caprolactone) nonwoven meshes. J Biomed Mater Res Part A 103(8):2673–2688

    Article  CAS  Google Scholar 

  85. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578

    Article  CAS  Google Scholar 

  86. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4

    Article  CAS  Google Scholar 

  87. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2(1):8–21

    Google Scholar 

  88. Sanchez E, Baro M, Soriano I, Perera A, Evora C (2001) In vivo–in vitro study of biodegradable and osteointegrable gentamicin bone implants. Eur J Pharm Biopharm 52(2):151–158

    Article  CAS  Google Scholar 

  89. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Rel 57(2):171–185

    Article  CAS  Google Scholar 

  90. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly (D, L-lactide-co-glycolide) and its derivatives. J Control Rel 125(3):193–209

    Article  CAS  Google Scholar 

  91. Bittner B, Ronneberger B, Zange R, Volland C, Anderson J, Kissel T (1998) Bovine serum albumin loaded poly (lactide-co-glycolide) microsphe: the influence of polymer purity on particle characteristics. J Microencapsul 15(4):495–514

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiran, I. et al. (2021). Graphene Functionalized PLA Nanocomposites and Their Biomedical Applications. In: Sharma, B., Jain, P. (eds) Graphene Based Biopolymer Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-15-9180-8_5

Download citation

Publish with us

Policies and ethics