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Foreword

My whole career has been dedicated to pursuing the development of various types
of functional nanoparticles and their nanoscale dispersion across multiple polymer
matrices, from engineering to bio-based polymers. So, the content of this book is
very close to my expertise.

The group, leading by Prof. Abhijit Bandyopadhyay, is well known to me
through their high-quality work on processing and development of new generation
engineering thermoplastic elastomers. Over the years, this group used various types
of advanced nanofillers to modify the inherent properties of different types of
elastomers using polymer nanocomposite technology.

Over the last few years, nanocarbons and related nanoparticles are becoming
emerging fillers for the development of next-generation engineering polymer
materials for a wide range of applications, from construction to biomedical.
Therefore, this book has immediate relevance, interest, and importance owing to the
trend in the plastic industry.

In this book, the authors tried to cover various characteristics of nanofillers and
several types of processing techniques to disperse them in thermoplastic elastomers.
The key to manufacturing a useful engineering thermoplastic elastomer nanocom-
posite for practical applications is to achieve the desired degree of dispersion of
filler particles in a polymer matrix and tune the obtained composite properties as per
the product requirement. I am thrilled to say that the authors very meticulously
cover this aspect in this book.

Based on my knowledge in this field and going through the content of this book,
I must say that this is an ideal book for postgraduate students, researchers, and
polymer processing technologists who are interested in engineering thermoplastic
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elastomers in general. I also believe this book will be beneficial for industry-based
scientists and engineering, including product development managers who want to
bring advanced elastomer-based products in the market.

Congratulations and all the best!

Professor Suprakas Sinha Ray
Chief Researcher and Manager

Centre for Nanostructures and Advanced Materials
Council for Scientific and Industrial Research

Pretoria, South Africa

Distinguished Visiting Professor
Department of Chemical Sciences

University of Johannesburg
Johannesburg, South Africa
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Preface

Rubber is a unique class of polymer pact with some uncanny properties like high
shock absorption, compressibility resistance, resilience, recoverable deformability
along with low modulus and strength. High molecular weight, high chain entan-
glement density, and extremely low cohesive force of attraction among the seg-
ments are the keys to form a rubber, which during processing is mixed with several
other ingredients (at least 10–12) to achieve the strange combination of properties.
Vulcanization or chemical crosslinking (either sulphur- or non-sulphur-based)
between the molecules of a rubber is thought to be the key that confers the true
rubberiness, and once that is achieved, the rubber becomes a thermoset. However,
in an era of sustainable development, a thermosetting polymer with zero recycla-
bility and complex formulation is not a preferred choice indeed. The world is
obsessed for polymers with “zero waste” technology—conventional rubber, being
unfit to that, makes a way for the relatively new thermoplastic elastomers or TPE
which by virtue of its inimitable molecular design has got the immense potential to
replace conventional rubbers in many of its applications. Believing to that, the
world has seen a steep rise in consumption of TPE of late and is also predicted to
hold an even stronger ground in future. The exclusive molecular design of tri- or
di-blocking of homopolymers developed though special living anionic polymer-
ization imparts the essence of both thermoplastic and elastomeric properties com-
bining both melt recyclability and recoverable elongation once the stress is lifted.
TPE, representing a unique combination of hard and soft polymer segments alluring
with high and low Tg s, respectively, inherits high cohesive strength, thus could
avoid nearly all additional ingredients unlike rubbers, and emerges as an ideal “zero
waste” future elastomer material. The good part is this elastomer could be
tailor-made as and when, driven by the application demand.

Of late, the world has seen the development of many new TPEs with different
monomers, block length, etc., befitting new as well as conventional applications.
Alongside, nanotechnology has emerged as a promising new material technology
for serving the human kind. Both isotropic and anisotropic nanomaterials have
shown remarkable properties that could revolutionize the material world with
advanced applications in optical, optoelectrical, and other relevant fields. The first
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revolutionary work on polymer nanotechnology was reported by the Toyota
Research Group in Japan nearly 30 years back, and since then different nanoma-
terials have been explored in a variety of thermoplastics and elastomers and yielded
some good to exciting results in many of the cases. However, on critical review,
anisotropic nanomaterials were found more effective on thermoplastics than on
elastomers largely due to the inherent viscoelasticity and presence of huge number
of ingredients in the latter. TPE, on the other hand, has been able to derive greater
benefit of the anisotropic nanomaterials and, thus of late, has been considered as a
better matrix than the conventional elastomer for exploration. The combination of
TPE and anisotropic nanomaterials like clay, carbon materials, and graphene has
yielded many exciting properties, befitting conventional as well as advanced
applications. Acknowledging the progress of this important hybrid material tech-
nology for the past seven to ten years, an attempt has been made to tot up important
outcomes, and analyse and predict the future applications. We believe this book
would serve as an important document for the readers for awareness and knowledge
enhancement.

Kolkata, India Abhijit Bandyopadhyay
Poulomi Dasgupta

Sayan Basak
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