Skip to main content
  • 214 Accesses

Abstract

Reactive species are reactive molecules, having one or two lone pairs that are naturally generated in biological environment via endogenous and exogenous method. These are non-avoidable by-product, highly reactive which are mainly produced by the Electron Transport Chain (ETC) of mitochondria by aerobic respiration. In this chapter, we explore the multi-faceted pathological roles of ROS in the living cell. These reactive species have bimodal action in both physiological and pathological processes. In regard to the good side of ROS, it plays a significant role in signaling, immune response, homeostasis, cell growth, signal transduction, and other physiological responses. Along with the good side, it has also the potential bad side, abnormal concentrations of these reactive molecules lead to the interference in redox homeostasis, which can induce oxidative stress, damaging intracellular components, and alter protein expression. The ugly effects of these mitochondrial reactive species can lead to devastating cardiomyopathies, pulmonary disorder, and neurodegenerative diseases. Various approaches have been developed so far for the detection of ROS but due to their short life span and low availability in biological system, these approaches are not very specific. In recent study, many fluorescent and mitochondrial targeting probes came into existence and these probes have the potential ability to quantified these free radicals very rapidly and efficiently. Furthermore, in this chapter, we focus on various methods like synthetic sensors, florescent probes, chemiluminescent probes, fiber optic sensors, electrochemical probes, and various alternative approaches that are used to analyze and quantify free radicals in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RC (1986) Phagocytic leukocyte oxygenation activities and chemiluminescence: a kinetic approach to analysis. Method Enzymol 133:449–493

    Article  CAS  Google Scholar 

  • Arnhold J (2004) Properties, functions, and secretion of human myeloperoxidase. Biochemistry (Mosc) 69(1):4–9

    Article  CAS  Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2Generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  CAS  PubMed  Google Scholar 

  • Beatty K, Williams M, Carlson B, Swarts B, Warren R, Van Helden P (2013) Sulfatase-activated fluorophores for rapid discrimination of mycobacterial species and strains. Proc Natl Acad Sci U S A 110:12911–12916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Sun W, Li J, Liu Z, Ma Z, Zhang W (2013) The first ratiometric fluorescent probes for aminopeptidase N cell imaging. Org Biomol Chem 11:378–382

    Article  CAS  PubMed  Google Scholar 

  • Cochemé HM, Logan A, Prime TA, Abakumova I, Quin C, McQuaker SJ, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RAJ, Hartley RC, Partridge Land Murphy MP (2012) Using the mitochondria-targeted ratiometric mass spectrometry probe Mito B to measure H2O2 in living drosophila. Nat Protoc 7:946–958

    Article  PubMed  CAS  Google Scholar 

  • Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145–157

    Article  CAS  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummen GP, Van- Liebergen LC, den Kamp JAO, Post JA (2002) C11-BODIPY 581/591, an oxidation-sensitive fluorescent lipid peroxidation probe:(micro) spectroscopic characterization and validation of methodology. Free Radic Biol Med 33:473–490

    Article  CAS  PubMed  Google Scholar 

  • Fagan-Murphy A, Hachoumi L, Yeoman MS, Patel BA (2016) Electrochemical sensor for the detection of multiple reactive oxygen and nitrogen species from ageing central nervous system homogenates. Mech Ageing Dev 160:28–31

    Article  CAS  PubMed  Google Scholar 

  • Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O2ṡ−. Free Radic Biol Med 15:447–451

    Article  CAS  PubMed  Google Scholar 

  • Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der Physic 437:55–75

    Article  Google Scholar 

  • Frank J, Pompella A, Biesalski HK (2000) Histochemical visualization of oxidant stress. Free Radic Biol Med 29:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Gajovic-Eichelmann N, Ehrentreich-Förster E, Bier FF (2003) Directed immobilization of nucleic acids at ultramicroelectrodes using a novel electro- deposited polymer. Biosens Bioelectron 19:417–422

    Article  CAS  PubMed  Google Scholar 

  • Gielis JF, Lin JY, Wingler K (2011) Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders. Free Radic Biol Med 50:765–776

    Article  CAS  PubMed  Google Scholar 

  • Gillissen A, Nowak D (1998) Characterization of N-acetylcysteine and ambroxol in anti-oxidant therapy. Respir Med 92:609–623

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Eduarda F, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Gyllenhammar H (1987) Lucigenin chemiluminescence in the assessment of neutrophil superoxide production. J Immunol Methods 97:209–213

    Article  CAS  PubMed  Google Scholar 

  • Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO (2008) Mitochondria-penetrating peptides. Chem Biol 15:375–382

    Article  CAS  PubMed  Google Scholar 

  • Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE (2008) Targeting mitochondria. Acc Chem Res 41:87–97

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Gow A, Thom SR, Kooy NW, Royall JA, Crow JP (1999) Detection of reactive nitrogen species using 2, 7-dichlorodihydrfluorescein and dihydrorhodamine 123. Methodenzymol 301:367–373

    CAS  Google Scholar 

  • Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H (2009) In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med 47:760–766

    Article  CAS  PubMed  Google Scholar 

  • Koide Y, Kawaguchi M, Urano Y, Hanaoka K, Komatsu T, Abo M (2012) A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine. Chem Commun (Camb) 48:3091–3093

    Article  CAS  Google Scholar 

  • Koide Y, Urano Y, Kenmoku S, Kojima H, Nagano T (2007) Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J Am Chem Soc 129:10324–10325

    Article  CAS  PubMed  Google Scholar 

  • Komatsu H, Harada H, Tanabe K, Hiraoka M, Nishimoto S (2010) Indolequinone-rhodol conjugate as a fluorescent probe for hypoxic cells: enzymatic activation and fluorescence properties. Med Chem Comm 1:50

    Article  CAS  Google Scholar 

  • Koopman WJ, Verkaart S, van Emst-de Vries SE, Grefte S, Smeitink JA, Willems PH (2006) Simultaneous quantification of oxidative stress and cell spreading using 5-(and-6)-chloromethyl-2′, 7′-dichlorofluorescein. Cytometry A 69:1184–1192

    Google Scholar 

  • Koopman WJ, Verkaart S, Visch HJ, van der Westhuizen FH, Murphy MP, van den Heuvel LW, Willems PH (2005) Inhibition of complex I of the electron transport chain causes O2−·-mediated mitochondrial outgrowth. AmJ Physiol Cell Physiol 288:C1440–C1450

    Article  CAS  Google Scholar 

  • Li X, Zhang H, Xie Y, Hu Y, Sun H, Zhu Q (2014) Fluorescent probes for detecting monoamine oxidase activity and cell imaging. Org Biomol Chem 12:2033–2036

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    Article  CAS  PubMed  Google Scholar 

  • Lovell JF, Chen J, Jarvi MT, Cao WG, Allen AD, Liu Y, Zheng G (2009) FRET quenching of photosensitizer singlet oxygen generation. J Phys Chem 113:3203–3211

    Article  CAS  Google Scholar 

  • Markvicheva KN, Bogdanova EA, Staroverov DB, Lukyanov S, Belousov VV (2009) Imaging of intracellular hydrogen peroxide production with Hyper upon stimulation of Hela cells with Egf. In: Redox-mediated signal transduction. Methods and protocol. Humana Press, New York, pp 76–83

    Google Scholar 

  • Miller E, Bian S, Chang C (2007) A fluorescent sensor for imaging reversible redox cycles in living cells. J Am Chem Soc 129:3458–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty JG, Jaffe JS, Shulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivate. J Immunol Methods 202:133–141

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Investig 91:2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pap EHW, Drummen GPC, Winter VJ, Kooij TWA, Rijken P, Wirtz KWA, Post JA (1999) Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY581/591. FEBS Lett 453:278–282

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Park D, Bae YS (2006) Molecular interaction of NADPH oxidase 1 with betaPix and Nox organizer 1. Biochem Bioph Res Co 339:985–990

    Article  CAS  Google Scholar 

  • Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium- based probes. Proc Natl Acad Sci U S A 103:15038–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross MF, Kelso GF, Blaikie FH, James AM, Cocheme HM, Filipovska A, Da Ros T, Hurd TR, Smith RAJ, Murphy MP (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem Mosc 70(2):222–230

    Article  CAS  Google Scholar 

  • Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  CAS  PubMed  Google Scholar 

  • Sarkar PK, Halder A, Adhikari A, Polley N, Darbar S, Lemmens P, Pal SK (2017) DNA-based fiber optic sensor for direct in-vivo measurement of oxidative stress. Sensor Actuat B-Chem 255:2194–2202

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Tan W, Shi ZY, Smith S, Birnbaum D, Kopelman R (1992) Submicrometer intracellular chemical optical fibre sensors. Science 258:778–781

    Article  Google Scholar 

  • Smith RAJ, Hartley RC, Murphy MP (2011) Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal 15:3021–3038

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296

    Article  CAS  PubMed  Google Scholar 

  • Suzuki YZ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan W, Shi ZY, Smith S, Birnbaum D, Kopelman R (1992) Submicrometer intracellular chemical optical fibre sensors. Science 258:778–781

    Article  CAS  PubMed  Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White KA, Marletta MA (1992) Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 31:6627–6631

    Article  CAS  PubMed  Google Scholar 

  • Yousif LF, Stewart KM, Horton KL, Kelley SO (2009) Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chem Bio Chem 10:2081–2088

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J, Zuo L, Otenbaker NP, Rose BA, Salisbury KS (2013) Molecular mechanisms of reactive oxygen species- related pulmonary inflammation and asthma. Mol Immunol 56:57–63

    Article  CAS  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  CAS  PubMed  Google Scholar 

  • Zuo L, Otenbaker NP, Rose BA, Salisbury KS (2013) Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol Immunol 56:57–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author (NA) is thankful to the Department of Biotechnology (DBT), Govt. of India for grants Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Mohsin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, N., Mohsin, M. (2020). Probes for Detection of Free Radicles. In: Mohsin, M., Naz, R., Ahmad, A. (eds) Nanobiosensors for Agricultural, Medical and Environmental Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-8346-9_11

Download citation

Publish with us

Policies and ethics